
Measuring Semantic Distance
using Distributional Profiles of Concepts

Saif Mohammad∗

Institute of Advanced Computer
Studies, University of Maryland

Graeme Hirst∗∗
Department of Computer Science,
University of Toronto

Automatic measures of semantic distance can be classified into two kinds: (1) those, such as
WordNet, that rely on the structure of manually created lexical resources and (2) those that
rely only on co-occurrence statistics from large corpora. Each kind has inherent strengths and
limitations. Here we present a hybrid approach that combines corpus statistics with the structure
of a Roget-like thesaurus to gain the strengths of each while avoiding many of their limitations.
We create distributional profiles (co-occurrence vectors) of coarse thesaurus concepts, rather
than words. This allows us to estimate the distributional similarity between concepts, rather
than words. We show that this approach can be ported to a cross-lingual framework, so as to
estimate semantic distance in a resource-poor language by combining its text with a thesaurus
in a resource-rich language. Extensive experiments, both monolingually and cross-lingually,
on ranking word pairs in order of semantic distance, correcting real-word spelling errors,
and solving word-choice problems show that these distributional measures of concept distance
markedly outperform traditional distributional word-distance measures and are competitive with
the best WordNet-based measures.

1. Introduction

Semantic distance is a measure of how close or distant two units of language are,
in terms of their meaning. The units of language may be words, phrases, sentences,
paragraphs, or documents. For example, the nouns dance and choreography are closer in
meaning than the nouns clown and bridge. These units of language, especially words,
may have more than one possible meaning. However, their context may be used to
determine the intended senses. For example, star can mean both CELESTIAL BODY and
CELEBRITY; however, star in the sentence below refers only to CELESTIAL BODY and is
much closer to sun than to famous:

(1) Stars are powered by nuclear fusion.

Thus, semantic distance between words in context is in fact the distance between word
senses or concepts. (We use the terms word senses and concepts interchangeably here,
although later on we will make a distinction. Throughout this paper, example words
will be written in italics, as in the example sentence above, whereas example senses or
concepts will be written in small capitals.)
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Two classes of automatic semantic distance measures exist. Lexical-resource-based
measures of concept-distance, such as those of Jiang and Conrath (1997), Leacock and
Chodorow (1998), and Resnik (1995), rely on the structure of a knowledge source, such
as WordNet, to determine the distance between two concepts defined in it. Distribu-
tional measures of word-distance, such as cosine and α-skew divergence (Lee 2001),
rely on the distributional hypothesis, which states that two words are semantically
close if they tend to occur in similar contexts (Firth 1957; Harris 1968). These measures
rely simply on text and can give the distance between any two words that occur at least
a few times.

However, both these approaches have significant limitations (described in detail
in Section 3). In this paper (Section 4), we present a new hybrid approach that com-
bines the co-occurrence statistics of a distributional approach with the information
in a lexical resource. We will refer to this new class of measures as distributional
measures of concept-distance. We also show how this approach can be ported to a
cross-lingual framework (Section 6), which has two additional benefits: (1) Semantic
distance problems in a resource-poor language can be solved by combining its texts with
a lexical resource from a resource-rich language; (2) Cross-lingual semantic distance
is useful when working on natural language problems that inherently involve two or
more languages, such as machine translation and multilingual information retrieval.
We perform extensive experiments, both monolingually (Section 5) and cross-lingually
(Section 7), and show that this new method is markedly better than others.

2. Background

2.1 When are two terms considered semantically close?

Humans consider two concepts to be semantically close if there is a sharing of some
meaning. More formally, two concepts are semantically close if there is a lexical seman-
tic relation between the concepts. According to Cruse (1986), a lexical semantic relation
is the relation between lexical units—a surface form along with a sense. As Cruse
points out, the number of semantic relations that bind concepts is innumerable but
certain relations, such as hyponymy, meronymy, antonymy, and troponymy, are more
systematic and have enjoyed more attention in the linguistics community. However,
as Morris and Hirst (2004) point out, these relations are far out-numbered by others
which they call non-classical relations. A few of the kinds of non-classical relations
they observed included positive qualities (BRILLIANT, KIND), commonly co-occurring
words (locations such as HOMELESS, SHELTER; problem–solution pairs such as DRUGS,
REHABILITATION).

2.2 Semantic relatedness and semantic similarity

Semantic distance is of two kinds: semantic similarity and semantic relatedness. The
former is a subset of the latter, but the two may be used interchangeably in certain con-
texts, making it even more important to be aware of their distinction. Two concepts are
considered to be semantically similar if there is a hyponymy (hypernymy), antonymy,
or troponymy relation between them. Two concepts are considered to be semantically
related if there is any lexical semantic relation between them—classical or non-classical.

Semantically similar concepts tend to share a number of common properties. For
example, consider APPLES and BANANAS. They are both hyponyms of FRUIT. They are
both edible, they grow on trees, they have seeds, etc. Another example of a semantically
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Table 1
Word-pair datasets that have been manually annotated with distance values. Pearson’s
correlation was used to determine inter-annotator correlation (last column). Those used for
experiments reported in this paper are marked in bold. “n.r.” stands for “not reported”.
Dataset Year Language # pairs PoS # subjects Correlation
Rubenstein and Goodenough 1965 English 65 N 51 n.r.
Miller and Charles 1991 English 30 N n.r. .90
Resnik and Diab 2000 English 27 V n.r. .76 and .79
Finkelstein 2002 English 153 N 13 n.r.
Finkelstein 2002 English 200 N 16 n.r.
Gurevych 2005 German 65 N 24 .81
Zesch and Gurevych 2006 German 350 N, V, A 8 .69

similar pair is DOCTOR and SURGEON. The concept of a DOCTOR is a hypernym of
SURGEON. Therefore, they share the properties associated with a DOCTOR.

On the other hand, semantically related concepts may not have many properties in
common, but have at least one classical or non-classical lexical relation between them
which lends them the property of being semantically close. For example, DOOR and
KNOB are semantically related as one is the meronym of the other (i.e., stands in the
part-of relation). The concept pair, DOCTOR and SURGEON is in addition to semantically
related (as well as being semantically similar) as one is the hyponym of the other.
Example pairs considered semantically related due to non-classical relations include
SURGEON–SCALPEL and TREE–SHADE. Note that semantic similarity entails semantic
relatedness but the converse need not be true.

2.3 Can humans estimate semantic distance?

Many will agree that humans are adept at estimating semantic distance, but consider
the following questions. How strongly will two people agree or disagree on distance
estimates? Will the agreement vary over different sets of concepts? In our minds, is
there a clear distinction between related and unrelated concepts or are concept-pairs
spread across the whole range from synonymous to unrelated?

Some of the earliest work that begins to answer these questions is by Rubenstein
and Goodenough (1965a). They conducted quantitative experiments with human sub-
jects (51 in all) who were asked to rate 65 English word pairs on a scale from 0.0 to 4.0
as per their semantic distance. The word pairs chosen ranged from almost synonymous
to unrelated. However, they were all noun pairs and those that were semantically close
were semantically similar; the dataset did not contain word pairs that were semantically
related but not semantically similar. The subjects repeated the annotation after two
weeks and the new distance values had a Pearson’s correlation r of 0.85 with the
old ones. Miller and Charles (1991) also conducted a similar study on 30 word pairs
taken from the Rubenstein-Goodenough pairs. These annotations had a high correlation
(r = 0.97) with the mean annotations of Rubenstein and Goodenough (1965a). Resnik
(1999) repeated these experiments and found the inter-annotator correlation (r) to be
0.90. Finkelstein (2002) asked human judges to rank two sets of noun pairs (153 pairs
and 200 pairs) in order of semantic distance. However, this dataset has certain polit-
ically biased word pairs, such as Arafat–peace, Arafat–terror, Jerusalem–Israel, Jerusalem–
Palestinian, and so there might be less human agreement on ranking this data.
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Resnik and Diab (2000) conducted annotations of 48 verb pairs and found inter-
annotator correlation (r) to be 0.76 when the verbs were presented without context and
0.79 when presented in context. Gurevych (2005) and Zesch et al. (2007) asked native
German speakers to mark two different sets of German word pairs with distance values.
Set 1 was a German translation of the Rubenstein and Goodenough (1965a) dataset. It
had 65 noun–noun word pairs. Set 2 was a larger dataset containing 350 word pairs
made up of nouns, verbs, and adjectives. The semantically close word pairs in the 65-
word set were mostly synonyms or hypernyms (hyponyms) of each other, whereas
those in the 350-word set had both classical and non-classical relations with each other.
Details of these semantic distance benchmarks are summarized in Table 1. Inter-subject
correlations (last column in Table 1) are indicative of the degree of ease in annotating
the datasets.

The high correlation values suggest that humans are quite good and consistent at
estimating semantic distance of noun-pairs; however, annotating verbs and adjectives
and combinations of parts of speech is harder. This also means that estimating semantic
relatedness is harder than estimating semantic similarity. It should be noted here that
even though the annotators were presented with word-pairs and not concept-pairs, it is
reasonable to assume that they were annotated as per their closest senses. For example,
given the noun pair bank and interest, most if not all will identify it as semantically
related even though both words have more than one sense andmany of the sense–sense
combinations are unrelated (for example, the RIVER BANK sense of bank and the SPECIAL
ATTENTION sense of interest).

Apart from proving that humans can indeed estimate semantic distance, these
datasets act as “gold standards” to evaluate automatic distance measures. However,
lack of large amounts of data from human subject experimentation limits the reliability
of this mode of evaluation. Therefore automatic distance measures are also evaluated
by their usefulness in natural language tasks such as correcting real-word spelling
errors (Budanitsky and Hirst 2006) and solving word-choice problems (Turney 2001).
We evaluate our distributional concept-distance measures both intrinsically through
ranking human-judged word pairs in order of semantic distance as well as extrinsically
through natural language tasks such as correcting spelling errors and solving word-
choice problems.

2.4 The anatomy of a distributional measure of semantic distance

Even though there are numerous distributional measures, many of which may seem
dramatically different from each other, all of them do the following: (1) choose a unit
of co-occurrence (e.g., word, word–syntactic-relation combination); (2) choose a mea-
sure of strength of association (SoA) of the co-occurrence unit with the target word
(e.g., conditional probability, pointwise mutual information); (3) represent the target
words by vectors or points in the co-occurrence space (and possibly apply dimension
reduction);1 and (4) calculate the distance between the target vectors using a suitable
distributional measure (e.g., cosine, Euclidean distance). While any of the measures of
vector distance may be used with any of the measures of strength of association, in
practice only certain combinations are used (see Table 2) and certain other combinations

1 The co-occurrence space is a hyper-dimensional space where each dimension is a unique co-occurrence
unit. If words are used as co-occurrence units, then this space has |V| dimensions, where V is the
vocabulary.
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Table 2
Measures of vector distance, measures of strength of association, and standard combinations.
Those used for experiments reported in this paper are marked in bold.
Measures of DP distance Measures of strength of association (SoA)
α-skew divergence (ASD) φ coefficient (Phi)
cosine (Cos) conditional probability (CP)
Dice coefficient (Dice) cosine (Cos)
Euclidean distance (L2 norm) Dice coefficient (Dice)
Hindle’s measure (Hin) log likelihood ration (LLR)
Kullback-Leibler divergence (KLD) odds ratio (Odds)
Manhattan distance (L1 norm) pointwise mutual information (PMI)
Jensen–Shannon divergence (JSD) Yule’s coefficient (Yule)
Lin’s measure (Lin)

Standard combinations
α-skew divergence—φ coefficient (ASD–CP)
cosine—conditional probability (Cos–CP)
Dice coefficient—conditional probability (Dice–CP)
Euclidean distance—conditional probability (L2 norm–CP)
Hindle’s measure—pointwise mutual information (Hin–PMI)
Kullback-Leibler divergence—conditional probability (KLD–CP)
Manhattan distance—conditional probability (L1 norm–CP)
Jensen–Shannon divergence—conditional probability (JSD–CP)
Lin’s measure—pointwisemutual information (Lin–PMI)

may not bemeaningful, for example, Kullback-Leibler divergencewith φ coefficient. We
will refer to these co-occurrence vectors as the distributional profile (DP) of the target
words. Below is a contrived, but plausible, example DP of the target word fusion:

FUSION: heat 0.16, hydrogen 0.16, energy 0.13, bomb 0.09, light 0.09, space 0.04, . . .

It shows that fusion has a strong tendency to co-occur with words such as heat, hydrogen,
and energy. The values are the pointwise mutual information between the target and
co-occurring words.

All experiments in this paper use simple word co-occurrences, and standard com-
binations of vector distance and measure of association. To avoid clutter, instead of
referring to a distributional measure by its measure of vector distance and measure
of association (for example, α-skew divergence—conditional probability), we will refer
to it simply by the measure of vector distance (in this case, α-skew divergence). The
measures used in our experiments are α-skew divergence (ASD) (Lee 2001) , cosine
(Cos) (Schütze and Pedersen 1997), Jensen-Shannon divergence (JSD) (Manning and
Schütze 2008), and that proposed by Lin (1998a) (Lin). Jensen–Shannon divergence
and α-skew divergence calculate the difference in distributions of words that co-occur
with the targets. Lin’s distributional measure follows from his information-theoretic
definition of similarity (Lin 1998b).
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3. Limitations of semantic distance measures

Lexical-resource-based concept-distance measures and distributional word-distance
measures each have certain uniquely attractive features: resource-based measures can
capitalize on manually encoded lexical semantic relations, whereas distributional ap-
proaches are widely applicable because they need only raw text (and maybe some
shallow syntactic processing). However, they both also have certain limitations.

3.1 Limitations of lexical-resource-based concept-distancemeasures

Resource-based measures are only as good as the lexical resource on which they rely.

3.1.1 Lack of high-quality WordNet-like knowledge sources. Ontologies, wordnets,
and semantic networks are available for a few languages such as English, German,
and Hindi. Creating them requires human experts and it is time intensive. Thus, for
most languages, we cannot use resource-based measures simply due to the lack of
high-quality large-coverage wordnet-like resources. Further, updating a resource is
again expensive and there is usually a lag between the current state of language us-
age/comprehension and the lexical resource representing it.

On the other hand, distributional measures require only text. Large corpora, billions
of words in size, may now be collected by a simple web crawler. Large corpora of more-
formal writing are also available (for example, the Wall Street Journal or the American
Printing House for the Blind (APHB) corpus). This makes distributional measures very
attractive.

3.1.2 Poor estimation of semantic relatedness. The most widely used WordNet-based
measures rely only on its extensive #is-a hierarchy. This is because networks of other
lexical-relations such as meronymy are much less developed. Further, the networks
for different parts of speech are not well connected. Thus, even though resource-based
measures are successful at estimating semantic similarity between nouns, they are poor
at estimating semantic relatedness—especially in pairs other than noun–noun. Also,
as Morris and Hirst (2004) pointed out, a large number of terms have a non-classical
relation between them and are semantically related (not semantically similar). On the
other hand, distributional measures can be used to determine both semantic relatedness
and semantic similarity (Mohammad and Hirst 2007).

3.1.3 Inability to cater to specific domains.Given a concept pair,measures that rely only
on a network and no text, such as Rada et al. (1989), give just one distance value. How-
ever, two concepts may be very close in a certain domain but not so much in another.
For example, SPACE and TIME are close in the domain of quantum mechanics but not
so much in most others. Resources created for specific domains do exist; however, they
are rare. Some of the more successful WordNet-based measures, such as that of Jiang
and Conrath (1997), rely on text as well, and do indeed capture domain-specificity to
some extent, but the distance values are still largely affected by the underlying network,
which is not domain-specific. On the other hand, distributional measures rely primarily
(if not completely) on text and large amounts of corpora specific to particular domains
can easily be collected.
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3.2 Limitations of corpus-based word-distance measures
3.2.1 Conflation of word senses. The distributional hypothesis (Firth 1957) states that
words that occur in similar contexts tend to be semantically close. But most frequently
used words have more than one sense; and a word in each of its senses is likely to co-
occur with different sets of words. For example, bank in the FINANCIAL INSTITUTION
sense is likely to co-occur with interest, money, accounts, and so on, whereas when used
in the RIVER BANK sense will co-occur with such as river, erosion, and silt. Thus, a
distributional measurewill give a score that is some form of a dominance-based average
of the distances between their senses.

However, in most natural language applications, including spelling correction,
information retrieval, and text summarization, one requires the semantic distance be-
tween the intended senses of the target words. Since words that occur together in text
tend to refer to senses that are closest in meaning to one another, this often tends to
be the distance between the closest senses of the two target words. Thus, distributional
word-distance measures are expected to perform poorly in the face of word sense am-
biguity. WordNet-based measures do not suffer from this problem as they give distance
between concepts, not words.

3.2.2 Data sparseness. Since Zipf’s law seems to hold even for the largest of corpora,
there will always be words that occur too few times for distributional measures to
accurately estimate their distance with other words. On the other hand, a large number
of relatively obscure words may be listed in high-coverage resources such as WordNet
(WordNet has more than 155,000 unique tokens). Of course, manually created resources
are also lacking in a number of word-types. However, they tend to have groupings of
words into coarse concepts. This allows even corpus-based approaches to determine
properties of these coarse concepts through occurrences of the more frequent members
of a concept. In Section 4, we will propose a hybrid method of semantic distance that
does exactly that using the categories in a published thesaurus.

3.3 Space requirements

As applications for linguistic distance become more sophisticated and demanding, it
becomes attractive to pre-compute and store the distance values between all possible
pairs of words or senses. However both WordNet-based and distributional measures
have large space requirements to do this, requiring matrices of size N × N , where N is
very large. In case of distributional measures, N is the size of the vocabulary (at least
100,000 for most languages). In case of WordNet-based measures, N is the number of
senses (81,000 just for nouns). Given that these matrices tend to be sparse2 and that
computational capabilities are continuing to improve, this limitation may not seem
hugely problematic, but as we see more and more natural language applications in
embedded systems and hand-held devices, such as cell phones, iPods, and medical
equipment, available memory becomes a serious constraints.

2 Even thoughWordNet-based and distributional measures give non-zero similarity and relatedness
values to a large number of term pairs (concept pairs and word pairs), values below a suitable threshold
can be reset to 0.
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apply pmi or conditional probability
create contingency tables

published thesaurustext corpus

distributional profiles of concepts

distributional
measure target concept 2

target concept 1calculate distributional distance

count word–category co-occurrences

distributional distance between target concepts

word–category co-occurrence matrix bootstrapping and
sense disambiguation

Figure 1
An overview of the distributional concept-distance approach.

4. Distributional Measures of Concept-Distance

We now propose a hybrid approach that combines corpus statistics with a published
thesaurus (Mohammad and Hirst 2006b; Mohammad et al. 2007). It overcomes, with
varying degrees of success, many of the limitations described in Section 3 earlier. Our
goal is to gain the performance of resource-based methods and the breadth of distribu-
tional methods. The central ideas are these:

! In the lexicographical component of the method, concepts are defined by
the category structure of a Roget-style thesaurus.! In order to avoid data sparseness, the concepts are very coarse-grained.! The distributional component of the method is based on concepts, not
surface strings. We create distributional profiles (co-occurrence vectors) of
concepts.

The sub-sections below describe our approach in detail. Figure 1 depicts the key steps.

4.1 Published thesaurus

A Roget-style thesaurus classifies all word types into approximately 1000 categories.
Words within a category tend to be semantically related to each other. Words with more
than one sense are listed in more than one category. Each category has a head word that
best represents the meaning of all the words in the category. Some example categories
are CLOTHING, HONESTY, and DESIRE. Each category is divided into paragraphs that
classify lexical units more finely; however, we do not make use of this information.

We take these thesaurus categories as the coarse-grained concepts of our method.
That is, for our semantic distance measure, there are only around 1000 concepts (word-
senses) in the world; each lexical unit is a pairing of the surface string with the thesaurus
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category in which it appears. This is in stark contrast to using WordNet synsets as
senses, which sometimes has been criticized to be much too fine-grained.3

Representing the complete vocabulary with only about 1000 concepts helps counter
data sparseness issues (limitation described in Section 3.2.2) at the cost of losing the abil-
ity to make fine-grained distinctions. This also means that pre-computing a complete
concept–concept distance matrix now involves the creation of a matrix approximately
only 1000 × 1000 in size—much smaller and roughly .01% the size of matrices required
by existing measures)—thereby mitigating storage limitations in memory-scarce de-
vices (limitation of Section 3.3).

In our experiments, we use the categories from the Macquarie Thesaurus (Bernard
1986). It has 812 categories with around 176,000 word-tokens and 98,000 word-types.

4.2 The distributional hypothesis for concepts

If we apply the distributional hypothesis (Firth 1957; Harris 1968) to word senses (in-
stead of words), then the hypothesis states that wordswhen used in different senses tend
to keep different “company" (co-occurringwords). Therefore,we propose the creation of
distributional profiles (DPs) of word senses or concepts, rather than those of words. The
closer the distributional profiles of two concepts, the smaller is their semantic distance.
Below are example distributional profiles of two senses of STAR:

CELESTIAL BODY: space 0.36, light 0.27, constellation 0.11, hydrogen 0.07, . . .
CELEBRITY: famous 0.24, movie 0.14, rich 0.14, fan 0.10, . . .

It should be noted that creating such distributional profiles of concepts is much more
challenging than creating distributional profiles of words, which involve simple word–
word co-occurrence counts. (In the next sub-section, we show how these profiles may be
estimated without the use of any sense-annotated data). However, once created, any of
the many measures of vector distance can be used to estimate the distance between the
DPs of two target concepts (just as in the case of traditional word-distance measures,
measures of vector distance are used to estimate the distance between the DPs of
two target words). For example, here is how cosine is traditionally used to estimate
distributional distance between two words.

Coscp(w1, w2) =

∑
w∈C(w1)∪C(w2)

(P (w|w1) × P (w|w2))√∑
w∈C(w1)

P (w|w1)2 ×
√∑

w∈C(w2)
P (w|w2)2

(1)

C(t) is the set of words that co-occur (within a certain window) with the word t in
a corpus. The conditional probabilities in the formula are taken from the distributional
profiles of words.We adapt the formula to estimate distributional distance between two
concepts as shown below:

Coscp(c1, c2) =

∑
w∈C(c1)∪C(c2)

(P (w|c1) × P (w|c2))√∑
w∈C(c1)

P (w|c1)2 ×
√∑

w∈C(c2)
P (w|c2)2

(2)

3 WordNet has more than 117,000 synsets. To counter this fine-grainedness, methods to group synsets into
coarser senses have been proposed (Agirre and Lopez de Lacalle Lekuona 2003; Navigli 2006).
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C(x) is now the set of words that co-occur with concept x within a pre-determined
window. The conditional probabilities in the formula are taken from the distributional
profiles of concepts.

If the distance between two words is required, and their intended senses are not
known, then the distance between all relevant sense pairs is determined and the min-
imum is chosen. (This is the heuristic described earlier in Section 3.2.1, and is exactly
how WordNet-based measures of concept-distance are used too (Budanitsky and Hirst
2006).) For example, if star has the two senses mentioned above and fusion has one (let’s
call it FUSION), then the distance between them is determined by first applying cosine
(or any vector distance measure) to the DPs of CELESTIAL BODY and FUSION:

CELESTIAL BODY: space 0.36, light 0.27, constellation 0.11, hydrogen 0.07, . . .
FUSION: heat 0.16, hydrogen 0.16, energy 0.13, bomb 0.09, light 0.09, space 0.04, . . .

and then applying cosine to the DPs of CELEBRITY and FUSION:

CELEBRITY: space 0.36, light 0.27, constellation 0.11, hydrogen 0.07, . . .
FUSION: heat 0.16, hydrogen 0.16, energy 0.13, bomb 0.09, light 0.09, space 0.04, . . .

Finally the scores which imply the greatest closeness (least distance) is chosen:

distance(star, fusion) = max(Cos(CELEBRITY, FUSION),Cos(CELESTIAL BODY, FUSION))
(3)

Note that the maximum value is chosen above because cosine is a closeness measure
(greater values imply smaller distances). In the case of distance measures, such as α-
skew divergence, the lower of the two values will be chosen.

4.3 Generating distributional profiles of concepts

Determining distributional profiles of concepts requires information about which words
co-occur with which concepts. A direct approach for this requires the text, from which
counts are made, to be sense annotated. Since existing labeled data is minimal and
manual annotation is far too expensive, indirect means must be used. Below, we present
a way to estimate distributional profiles of concepts from raw text, using a published
thesaurus (the concept inventory) and a bootstrapping algorithm.

4.3.1 Creating a word–category co-occurrence matrix. A word–category co-occurrence
matrix (WCCM) is created having word types w as one dimension and thesaurus
categories c as another.

c1 c2 . . . cj . . .
w1 m11 m12 . . . m1j . . .
w2 m21 m22 . . . m2j . . .
...

...
... . . . ...

...
wi mi1 mi2 . . . mij . . .
...

...
... . . .

... . . .

The matrix is populated with co-occurrence counts from a large corpus. A particular
cell mij , corresponding to word wi and category or concept cj , is populated with the
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number of times wi co-occurs (in a window of ±5 words) with any word that has cj

as one of its senses (i.e., wi co-occurs with any word listed under concept cj in the
thesaurus). For example, assume that the concept of CELESTIAL BODY is represented by
four words in the thesaurus: constellation, planet, star, and sun. If the word space co-occurs
with constellation (15 times), planet (50 times), star (40 times), and sun (65 times) in the
given text corpus, then the cell for space and CELESTIAL BODY in theWCCM is populated
with 170 (15 + 50 + 40 + 65). This matrix, created after a first pass of the corpus, is called
the base word–category co-occurrence matrix (base WCCM).

The choice of ±5 words as window size is somewhat arbitrary and hinges on the
intuition that words close to a target word are more indicative of its semantic properties
than those more distant. Church andHanks (1990), in their seminal work onword–word
co-occurrence association, also use a window size of ±5 words and argue that this size
is large enough to capture many verb–argument dependencies and yet small enough
that adjacency information is not diluted too much.

A contingency table for any particular word w and category c can be easily gener-
ated from the WCCM by collapsing cells for all other words and categories into one and
summing up their frequencies.

c ¬c
w nwc nw¬
¬w n¬c n¬¬

The application of a suitable statistic, such as pointwise mutual information or condi-
tional probability, will then yield the strength of co-occurrence association between the
word and the category.

As the base WCCM is created from unannotated text, it will be noisy. For example,
out of the 40 times star co-occurs with space, 25 times it may have been used in the CELES-
TIAL BODY sense and 15 times in the CELEBRITY sense. However, since this information
was not known to the system, the cell for space—CELESTIAL BODY in the base WCCM
was incremented by 40 rather than 25. Similarly, the cell for space—CELEBRITY was also
incremented by 40 rather than 15. That said, the baseWCCMdoes capture strong word–
category co-occurrence associations reasonably accurately. This is because the errors
in determining the true category that a word co-occurs with will be distributed thinly
across a number of other categories. For example, even though we increment counts for
both space–CELESTIAL BODY and space–CELEBRITY for a particular instance where space
co-occurs with star, space will co-occur with a number of words such as planet, sun, and
constellation that each have the sense of celestial body in common (Figure 2), whereas
all their other senses are likely different and distributed across the set of concepts.
Therefore, the co-occurrence count, and thereby strength of association (SoA), of space
and CELESTIAL BODY will be relatively higher than that of space and CELEBRITY (Figure
3). For more details, see discussion of the general principle by Resnik (1998).

4.3.2 Bootstrapping. We now discuss a bootstrapping procedure aimed at reducing,
even more, the errors in the WCCM due to word sense ambiguity. Words that occur
close to a target word tend to be good indicators of its intended sense. Therefore, a
second pass of the corpus is made and the baseWCCM is used to roughly disambiguate
the words in it. Each word in the corpus is considered as the target one at a time. For
each sense of the target, its strength of association with each of the words in its context
(±5 words) is summed. The sense that has the highest cumulative association with co-
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........

w

CELESTIAL BODY

space
a fragment of text

one sense of w

other sense(s) of w
w ∈ {constellation, planet, star, sun}

Figure 2
The word space will co-occur with a number of wordsX that each have one sense of CELESTIAL
BODY in common.

CELESTIAL BODY

CELEBRITY

SoA

SoA
a fragment of text

starspace

sense of star

sense of star

Figure 3
The base WCCM captures strong word–category co-occurrence strength of association (SoA).

occurring words is chosen as the intended sense of the target word. In this second pass,
a new bootstrapped WCCM is created such that each cell mij , corresponding to word
wi and concept cj , is populated with the number of times wi co-occurs with any word
used in sense cj . For example, consider again the 40 times star co-occurs with space. If
the contexts of 25 of these instances have higher cumulative strength of association
with CELESTIAL BODY than CELEBRITY, suggesting that in only these 25 of those 40
occurrences star was used in CELESTIAL BODY sense, then the cell for space–CELESTIAL
BODY is incremented by 25 rather than 40 (as was the case in the base WCCM). This
bootstrapped WCCM, created after simple and fast word sense disambiguation, will
better capture word–concept co-occurrence values, and hence strengths of association
values, than the base WCCM.4

The bootstrapping step can be repeated; however, further iterations do not improve
results significantly. This is not surprising because the baseWCCMwas createdwithout
anyword sense disambiguation and so the first bootstrapping iteration with word sense
disambiguation will markedly improve the matrix. The same is not true for subsequent
iterations.

5. Evaluation: monolingual tasks

We evaluated the distributional concept-distance measures on two monolingual tasks:
ranking word pairs in order of their semantic distance and correcting real-word spelling
errors. Each of these experiments is described in the subsections below. We also used

4 Speed of disambiguation is important here as all words in the corpus are to be disambiguated. After
determining co-occurrence counts from the BNC (a 100 million word corpus), creating the bootstrapped
WCCM from the base WCCM took only about 4 hours on a 1.3GHz machine with 16GB memory.
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distributional profiles of concepts to determine word sense dominance and obtained
near-upper-bound results (not described here; see Mohammad and Hirst (2006a)).

We conducted experiments with four vector distance measures: α-skew divergence
(ASD) (α = 0.99), cosine (Cos), Jensen–Shannon divergence (JSD), and Lin’s distribu-
tional measure (Lindist). All four vector distancemeasures were used to solve the word-
pair ranking and spelling correction tasks in two different ways: (1) by calculating tra-
ditional distributional word-distance, that is, distance between distributional profiles of
words; (2) by calculating distributional concept-distance, that is, distance between dis-
tributional profiles of concepts. This allows for a fair comparison of the two approaches.
However, comparison with WordNet-based measures is not so straightforward. Both of
the above-mentioned semantic distance tasks have traditionally been performed using
WordNet-based measures—which are good at estimating semantic similarity between
nouns but particularly poor at estimating semantic relatedness between concept pairs
other than noun–noun. This has resulted in the creation of “gold-standard" data only
for nouns. As creating new gold-standard data is arduous, we perform experiments on
existing noun data.

The distributional profiles of concepts were created from the British National Corpus
(BNC) and the Macquarie Thesaurus. In the base WCCM, 22.85% of the 98, 000× 812
cells had non-zero values whereas the statistic in the bootstrapped WCCM was 9.1%.5
The word-distance measures used a word–word co-occurrence matrix created from the
BNC alone. The BNC was not lemmatized, part-of-speech tagged, nor chunked. The
vocabulary was restricted to the words present in the thesaurus (about 98,000 word
types) both to provide a level evaluation platform and to filter out named entities and
tokens that are not actually words (for example, the BNC has Hahahahahahahahaaaaa,
perampam, and Owzeeeyaaaah). Also, in order to overcome large computation times of
distributional word-distance measures, co-occurrence counts less than five were reset
to zero, and words that co-occurred with more than 2000 other words were stoplisted
(543 in all). This resulted in a word–word co-occurrence matrix having non-zero values
in 0.02% of its 98, 000× 98, 000 cells.

5.1 Ranking word pairs

A direct approach to evaluate semantic distance measures is to determine how close
they are to human judgment and intuition. Given a set of word-pairs, humans can rank
them in order of their distance—placing near-synonyms on one end of the ranking
and unrelated pairs on the other. As described earlier in Section 2.3, Rubenstein and
Goodenough (1965a) provide a “gold-standard” list of 65 human-ranked word-pairs
(based on the responses of 51 subjects). An automatic distance measure is deemed
to be more accurate than another if its ranking of word-pairs correlates more closely
with the human ranking. The concept distance measures were used to determine word-
pair distance by two different methods: (1) calculating the concept-distance between all
pairs of senses of the two words, and then choosing the shortest distance; (2) taking the
average of the distance between each of the relevant pairs of senses.

Table 3 lists correlations of human rankings with those created using the word–
word co-occurrence matrix–based traditional distributional word-distance measures
and the correlations using the proposed word–concept co-occurrence matrix–based dis-
tributional concept-distance measures. Observe that the distributional concept-distance

5 Recall that theMacquarie Thesaurus has 98,000 word types and 812 categories.
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Table 3
Correlations with human ranking of Rubenstein and Goodenough word pairs of automatic
rankings using traditional word–word co-occurrence–based distributional word-distance
measures and the word–concept co-occurrence–based distributional concept-distance measures.
Best results for each measure-type are shown in boldface.

Measure-type
Word-distance Concept-distance

Distributional measure closest average
α-skew divergence 0.45 0.60 –
cosine 0.54 0.69 0.42
Jensen–Shannon divergence 0.48 0.61 –
Lin’s distributional measure 0.52 0.71 0.59

Figure 4
Correlations with human ranking of Rubenstein and Goodenough word pairs of automatic
rankings using traditional word–word co-occurrence–based distributional word-distance
measures and the word–concept co-occurrence–based distributional concept-distance measures.

measures give markedly higher correlation values than distributional word-distance
measures. (Figure 4 depicts the results in a graph.) These results are also better than the
best reported results (0.64) using latent semantic analysis (Landauer, Foltz, and Laham
1998). Also, using the distance of the closest sense pair (for Cos and Lindist) gives much
better results than using the average distance of all relevant sense pairs. (We do not
report average distance for ASD and JSD because they give very large distance values
when sense-pairs are unrelated; these values dominate the averages, overwhelm the
others, and make the results meaningless.) These correlations are, however, notably
lower than those obtained by the best WordNet-based measures (not shown in the
table), which fall in the range 0.78 to 0.84 (Budanitsky and Hirst 2006).

5.2 Correcting real-word spelling errors

The set of Rubenstein and Goodenough word pairs is much too small to safely assume
that measures that work well on them do so for the entire English vocabulary. Conse-
quently, semantic measures have traditionally been evaluated through more extensive
applications such as the work by Hirst and Budanitsky (2005) on correcting real-word

14



Mohammad and Hirst Measuring Semantic Distance using Distributional Profiles of Concepts

spelling errors (or malapropisms). If a word in a text is not semantically close to any
other word in its context, then it is considered a suspect. If the suspect has a spelling-
variant that is semantically close to a word in its context, then the suspect is declared a
probable real-word spelling error and an alarm is raised; the semantically close spelling-
variant is considered its correction. Hirst and Budanitsky tested the method on 500
articles from the 1987–89Wall Street Journal corpus for their experiments, replacing one
noun in every 200th word by a spelling-variant and looking at whether the method
could restore the original word. This resulted in text with 1408 real-word spelling
errors out of a total of 107,233 noun tokens. we adopt this method and this test data,
but whereas Hirst and Budanitsky used WordNet-based semantic measures, we use
distributional concept- and word-distance measures.

In order to determine whether two words are “semantically close” or not as per
any measure of distance, a threshold must be set. If the distance between two words
is less than the threshold, then they will be considered semantically close. Hirst and
Budanitsky (2005) pointed out that there is a notably wide band in the human ratings
of the Rubenstein and Goodenough word pairs such that no word-pair was assigned
a distance value between 1.83 and 2.36 (on a scale of 0–4). They argue that somewhere
within this band is a suitable threshold between semantically close and semantically
distant, and therefore set thresholds for the WordNet-based measures such that there
was maximum overlap in what the automatic measures and human judgments consid-
ered semantically close and distant. Following this idea, we use an automatic method
to determine thresholds for the various distributional concept- and word-distance mea-
sures. Given a list of Rubenstein and Goodenough word pairs ordered according to
a distance measure, we repeatedly consider the mean of all adjacent distance values as
candidate thresholds. Then we determine the number of word-pairs correctly classified
as semantically close or semantically distant for each candidate threshold, considering
which side of the band they lie as per human judgments. The candidate threshold with
highest accuracy is chosen as the threshold.

We follow the Hirst and St. Onge (1998) metrics to evaluate real-word spelling
correction. Suspect ratio and alarm ratio evaluate the processes of identifying suspects
and raising alarms, respectively.

suspect ratio =
(number of true-suspects)/(number of malapropisms )

(number of false-suspects)/(number of non-malapropisms) (4)

alarm ratio =
(number of true-alarms)(number of true-suspects)

(number of false-alarms)/(number of false-suspects) (5)

Detection ratio is the product of the two, andmeasures overall performance in detecting
the errors.

detection ratio =
(number of true-alarms)/(number of malapropisms)

(number of false-alarms)/(number of non-malapropisms) (6)
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Correction ratio indicates overall correction performance, and is the “bottom-line”
statistic.

correction ratio =
(number of corrected malapropisms)/(number of malapropisms)

(number of false-alarms)/(number of non-malapropisms)
(7)

Values greater than 1 for each of these ratios indicate results better than random guess-
ing. The ability of the system to determine the intended word, given that it has correctly
detected an error, is indicated by the correction accuracy (0 to 1).

correction accuracy =
number of corrected malapropisms

number of true-alarms (8)

Notice that the correction ratio is the product of the detection ratio and correction
accuracy. The overall (single-point) precision (P), recall(R), and F-score (F) of detection
are also computed.

P =
number of true-alarms
number of alarms (9)

R =
number of true-alarms
number of malapropisms (10)

F =
2 × P × R

P + R
(11)

The product of detection F-score and correction accuracy, which we will call correction
performance, can also be used as a bottom-line performance metric.

Table 4 details the performance of distributional word- and concept-distance mea-
sures. For comparison, the table also lists results obtained by Hirst and Budanitsky
(2005) using WordNet-based concept-distance measures: those of Hirst and St. Onge
(1998), Jiang and Conrath (1997), Leacock and Chodorow (1998), Lin (1997), and Resnik
(1995). The last two are information content measures that rely on finding the lowest
common subsumer (lcs) of the target synsets inWordNet’s hypernym hierarchy and use
corpus counts to determine how specific or general this concept is. Themore specific the
lcs is and the smaller the difference of its specificity with that of the target concepts, the
closer the target concepts are considered. (See Budanitsky and Hirst (2001) for more
details.)

Observe that the correction ratio results for the distributional word-distance mea-
sures are poor compared to distributional concept-distance measures; the concept-
distance measures are clearly superior, in particular α-skew divergence and cosine.
(Figure 5 depicts the results in a graph.) Moreover, if we consider correction ratio to be
the bottom-line statistic, then three of the four distributional concept-distance measures
outperform all the WordNet-based measures except the Jiang–Conrath measure. If we
consider correction performance to be the bottom-line statistic, then again we see that
the distributional concept-distance measures outperform the word-distance measures,
except in the case of Lin’s distributional measure, which gives slightly poorer results
with concept-distance.
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Figure 5
Correction ratio obtained on the real-word spelling correction task using traditional word–word
co-occurrence–based distributional word-distance measures and the word–concept
co-occurrence–based distributional concept-distance measures.

Also, in contrast to correction ratio values, using the Leacock–Chodorow measure
results in relatively higher correction performance values than the best distributional
concept-distance measures. While it is clear that the Leacock–Chodorow measure is
relatively less accurate in choosing the right spelling-variant for an alarm (correction
accuracy), detection ratio and detection F -score present contrary pictures of relative
performance in detection.

As the correction ratio is determined by the product of a number of ratios, each
evaluating the various stages of malapropism correction (identifying suspects, raising
alarms, and applying the correction), we believe it is a better indicator of overall
performance than correction performance, which is a not-so-elegant product of an F -
score and accuracy. However, no matter which of the two is chosen as the bottom-line
performance statistic, the results show that the distributional concept-distancemeasures
are clearly superior to word-distance measures. Further, of all the WordNet-based
measures, only that proposed by Jiang and Conrath outperforms the best distributional
concept-distance measures consistently with respect to both bottom-line statistics.

6. Cross-lingual Semantic Distance

The application of semantic distance algorithms in most languages is hindered by the
lack of high-quality linguistic resources.WordNet-basedmeasures of semantic distance,
such as those of Jiang and Conrath (1997) and Resnik (1995), require a WordNet.
Distributional measures of word-distance, as shown in Section 4 earlier, are markedly
less accurate because they conflate the many senses of a word. Also as shown there,
distributional measures of concept-distance avoid sense conflation and achieve results
better than the traditional word-distance measures. However, the high-quality thesauri
and WordNet-like resources that the concept-distance methods require do not exist for
most of the 3000–6000 languages in existence today and they are costly to create.

Here we show how distributional measures of concept-distance can be ported to a
cross-lingual framework to overcome this knowledge bottleneck. We describe cross-
lingual distributional measures of concept-distance, or simply cross-lingual mea-
sures, that determine the distance between a word pair in resource-poor language L1

using a knowledge source in a resource-rich language L2. We use a bilingual lexicon to
connect the words in L1 with the words in L2. We will compare this approach with the
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star

Stern Bank

bank bench

}
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}CELEBRITY BODY INSTITUTION
CELESTIAL

BANK
RIVER

FURNITURE JUDICIARY
FINANCIAL

wen

wde

cen

Figure 6
The cross-lingual candidate senses of German words Stern and Bank. In red are concepts that are
not really senses of the German words, but simply artifacts of the translation step.

best monolingual approaches, which usually require high-quality knowledge sources in
the same language (L1); the smaller the loss in performance, the more capable the cross-
lingual algorithm is of overcoming ambiguities in word translation. An evaluation,
therefore, requires an L1 that in actuality has adequate knowledge sources. Therefore
we chose German to stand in as the resource-poor language L1 and English as the
resource-rich L2. The evaluation tasks will involve estimating the semantic distance
between German words. Both monolingual and cross-lingual approaches will use the
same German corpus, but while the monolingual approach will use a knowledge source
in the same language, the German GermaNet, the cross-lingual approach (which we de-
scribe below)will use a knowledge source from another language, the EnglishMacquarie
Thesaurus. The remainder of this section describes our approach in terms of German and
English, but the algorithm itself is language independent.

6.1 Cross-lingual senses, cross-lingual distributional profiles, and cross-lingual dis-
tributional distance

Given a German word wde in context, we use a German–English bilingual lexicon to
determine its different possible English translations. Each English translation wen may
have one or more possible coarse senses, as listed in an English thesaurus. These English
thesaurus concepts (cen) will be referred to as the cross-lingual candidate senses of
the German word wde. Figure 6 depicts examples. They are called “candidate" because
some of the senses of wen might not really be senses of wde. For example, CELESTIAL
BODY and CELEBRITY are both senses of the English word star, but the German word
Stern can mean only CELESTIAL BODY and not CELEBRITY. Similarly, the German Bank
can mean FINANCIAL INSTITUTION or FURNITURE, but not RIVER BANK or JUDICIARY.
An automated system has no straightforward method of teasing out the actual cross-
lingual senses of wde from those that are an artifact of the translation step. So we
treat them all as its senses. Now, we proceed to determine semantic distance just as
in the monolingual case, except that the words are German and their senses are English
thesaurus categories. Table 5 presents a mini vocabulary of German words needed to
understand the discussion below.

As in the monolingual estimation of distributional concept-distance, the distance
between two concepts is calculated by first determining their DPs (co-occurrence vec-
tors). Recall the example monolingual DPs of the two senses of star:

CELESTIAL BODY (celestial body, sun, . . . ): space 0.36, light 0.27, constellation 0.11, hydrogen
0.07, . . .

CELEBRITY (celebrity, hero, . . . ): famous 0.24, movie 0.14, rich 0.14, fan 0.10, . . .
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Table 5
Vocabulary of German words needed to understand this discussion.
German word Meaning(s) German word Meaning(s)
Bank 1. financial institution Licht light

2. bench (furniture) Morgensonne morning sun
berühmt famous Raum space
Bombe bomb reich rich
Erwärmung heat Sonne sun
Film movie (motion picture) Star star (celebrity)
Himmelskörper heavenly body Stern star (celestial body)
Konstellation constellation Verschmelzung fusion

In the cross-lingual approach, a concept is now glossed by near-synonymous words in
an English thesaurus, whereas its profile is made up of the strengths of association with
co-occurring German words. We will call them cross-lingual distributional profiles of
concepts or just cross-lingual DPCs. Here are constructed examples for the two cross-
lingual candidate senses of the German word Stern:

CELESTIAL BODY (celestial body, sun, . . . ): Raum 0.36, Licht 0.27, Konstellation 0.11, . . .
CELEBRITY (celebrity, hero, . . . ): berühmt 0.24, Film 0.14, reich 0.14, . . .

The values are the strength of association (usually pointwise mutual information or
conditional probability) of the target concept with co-occurring words. In order to cal-
culate the strength of association, we must first determine individual word and concept
counts, as well as their co-occurrence counts. The next section describes how these can
be estimated without the use of any word-aligned parallel corpora and without any
sense-annotated data. The closer the cross-lingual DPs of two concepts, the smaller
is their semantic distance. Just as in the case of monolingual distributional concept-
distance measures (described in Section 4.2 earlier), distributional measures can be used
to estimate the distance between the cross-lingual DPs of two target concepts. For ex-
ample, recall how cosine is used in a monolingual framework to estimate distributional
distance between two concepts:

Coscp(c1, c2) =

∑
w∈C(c1)∪C(c2)

(P (w|c1) × P (w|c2))√∑
w∈C(c1)

P (w|c1)2 ×
√∑

w∈C(c2)
P (w|c2)2

(12)

C(x) is the set of English words that co-occur with English concept x within a pre-
determined window. The conditional probabilities in the formula are taken from the
monolingual distributional profiles of concepts. We can adapt the formula to estimate
cross-lingual distributional distance between two concepts as shown below:

Coscp(cen1 , cen2 ) =

∑
wde∈C(cen1 )∪C(cen2 )

(
P (wde|cen1 ) × P (wde|cen2 )

)
√∑

wde∈C(cen1 ) P (wde|cen1 )2 ×
√∑

wde∈C(cen2 ) P (wde|cen2 )2
(13)
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C(x) is now the set of German words that co-occur with English concept x within a
pre-determined window. The conditional probabilities in the formula are taken from
the cross-lingual DPCs.

If the distance between two German words is required, then the distance between
all relevant English cross-lingual candidate sense pairs is determined and the minimum
is chosen. For example, if Stern has the two cross-lingual candidate senses mentioned
above and Verschmelzung has one (FUSION), then the distance between them is deter-
mined by first applying cosine (or any distributional measure) to the cross-lingual DPs
of CELESTIAL BODY and FUSION:

CELESTIAL BODY (celestial body, sun, . . . ): Raum 0.36, Licht 0.27, Konstellation 0.11, . . .
FUSION (thermonuclear reaction, atomic reaction, . . . ): Erwärmung 0.16, Bombe 0.09, Licht
0.09, Raum 0.04, . . .

Then applying cosine to the cross-lingual DPs of CELEBRITY and FUSION:

CELEBRITY (celebrity, hero, . . . ): berühmt 0.24, Film 0.14, reich 0.14, . . .
FUSION (thermonuclear reaction, atomic reaction, . . . ): Erwärmung 0.16, Bombe 0.09, Licht
0.09, Raum 0.04, . . .

And finally choosing the one with minimum semantic distance, that is, maximum
similarity/relatedness:

distance(Stern,Verschmelzung) = max(Coscp(CELEBRITY, FUSION),Coscp(CELESTIAL BODY, FUSION))
(14)

Maximum is chosen because cosine is a similarity/relatedness measure. In case of
distance measures, such as α Skew Divergence, the minimum will be chosen.

6.2 Estimating cross-lingual DPCs by creating cross-lingual word–category co-
occurrence matrix

Determining cross-lingual distributional profiles of concepts requires information about
which words in one language L1 co-occur with which concepts as defined in another
language L2. This means that a direct approach requires the text in L1, from which
counts are made, to have a word-aligned parallel corpus in L2. Further, the L2 text must
be sense annotated. Such data exists rarely, if at all, and it is expensive to create. Here
we present a way to estimate cross-lingual distributional profiles of concepts from raw
text (in one language, L1) and a published thesaurus (in another language, L2) using an
L1–L2 bilingual lexicon and a bootstrapping algorithm.

We create a cross-lingual word–category co-occurrence matrix with German word
types wde as one dimension and English thesaurus concepts cen as the other.

cen1 cen2 . . . cenj . . .
wde1 m11 m12 . . . m1j . . .
wde2 m21 m22 . . . m2j . . .
...

...
... . . . ...

...
wdei mi1 mi2 . . . mij . . .
...

...
... . . .

... . . .
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celestial body star

Star SternSonne Morgensonne

sun ... }

... }

}

Himmelskörper

wen

wde

CELESTIAL BODY cen

Figure 7
Words having CELESTIAL BODY as one of their cross-lingual candidate senses.

The matrix is populated with co-occurrence counts from a large German corpus.
A particular cellmij , corresponding to word wdei and concept cenj , is populated with

the number of times the German word wdei co-occurs (in a window of ±5 words) with
any German word having cenj as one of its cross-lingual candidate senses. For example,
the Raum–CELESTIAL BODY cell will have the sum of the number of times Raum co-
occurs withHimmelskörper, Sonne, Morgensonne, Star, Stern, and so on (see Figure 7). This
matrix, created after a first pass of the corpus, is called the cross-lingual baseWCCM. A
contingency table for any particular German word wde and English category cen can be
easily generated from the WCCM by collapsing cells for all other words and categories
into one and summing up their frequencies.

cen ¬cen

wde nwdecen nwde¬
¬wde n¬cen n¬¬

The application of a suitable statistic, such as PMI or conditional probability, will then
yield the strength of association between the German word and the English category.

As the cross-lingual base WCCM is created from unannotated text, it will be noisy
(for the same word-sense-ambiguity reasons as to why the monolingual base WCCM
is noisy—explained in Section 4.3.1 earlier). Yet, again, the cross-lingual base WCCM
does capture strong associations between a category (concept) and co-occurring words
(just like the monolingual baseWCCM). For example, even though we increment counts
for both Raum–CELESTIAL BODY and Raum–CELEBRITY for a particular instance where
Raum co-occurs with Star, Raum will co-occur with a number of words such as Himmel-
skörper, Sonne, andMorgensonne that each have the sense of CELESTIAL BODY in common
(see Figures 7 and 8), whereas all their other senses are likely different and distributed
across the set of concepts. Therefore, the co-occurrence count of Raum and CELESTIAL
BODY, and thereby their strength of association, will be relatively higher than those of
Raum and CELEBRITY (Figure 9). Therefore, we bootstrap the matrix just as described
before in the monolingual case (Section 4.3.2).

7. Evaluation: cross-lingual, word-distance tasks

We evaluated German–English cross-lingual distributional measures of concept-
distance on the tasks of (1) measuring semantic distance between German words and
ranking German word pairs according to semantic distance, and (2) solving German
‘nearest-synonym’ questions from Reader’s Digest. Each of these is described in the
subsections below.We also used Chinese–English cross-lingual distributional profiles of
concepts in SemEval-2007’s Chinese–English word-translation task (not described here;
see Mohammad et al. (2007)).
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Raum

........

CELESTIAL BODY

x
a fragment of text

other sense(s) of x
x ∈ {Stern, Sonne, Himmelskörper, Morgensonne, Konstellation}

one sense of x

Figure 8
The word Raum will also co-occur with a number of other words x that each have one sense of
CELESTIAL BODY in common.

Raum Stern

CELESTIAL BODY

CELEBRITY

SoA

SoA
a fragment of text

sense of Stern

sense of Stern

Figure 9
The base WCCM captures strong word–category co-occurrence strength of association (SoA).

The German-English distributional profiles were created using the following re-
sources: the German newspaper corpus taz6 (Sep 1986 to May 1999; 240 million words),
the English Macquarie Thesaurus (Bernard 1986) (about 98,000 word types), and the
German–English bilingual lexicon BEOLINGUS7 (about 265,000 entries). Multi-word
expressions in the thesaurus and the bilingual lexicon were ignored. We used a context
of ±5 words on either side of the target word for creating the base and bootstrapped
WCCMs. No syntactic pre-processing was done, nor were the words stemmed, lemma-
tized, or part-of-speech tagged.

In order to compare results with state-of-the-art monolingual approaches we con-
ducted experiments using GermaNet measures as well. The specific distributional mea-
sures andGermaNet-basedmeasures used are listed in Table 6. The GermaNetmeasures
used are of two kinds: (1) information content measures, and (2) Lesk-like measures
that rely on n-gram overlaps in the glosses of the target senses, proposed by Gurevych
(2005). As GermaNet does not have glosses for synsets, Gurevych (2005) proposed a
way of creating a bag-of-words-type pseudo-gloss for a synset by including the words
in the synset and in synsets close to it in the network. The information content measures
rely on finding the lowest common subsumer (lcs) of the target synsets in a hypernym
hierarchy and using corpus counts to determine how specific or general this concept is.
The more specific the lcs is and the smaller the difference of its specificity with that of
the target concepts, the closer the target concepts are.

6 http://www.taz.de
7 http://dict.tu-chemnitz.de
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Table 6
Distance measures used in the experiments.
(Cross-lingual) DistributionalMeasures (Monolingual) GermaNet Measures

Information Content–based Lesk-like
α-skew divergence (Lee 2001) Jiang and Conrath (1997) hypernym pseudo-gloss
cosine (Schütze and Pedersen 1997) Lin (1998b) (Gurevych 2005)
Jensen-Shannon divergence Resnik (1995) radial pseudo-gloss
(Dagan, Lee, and Pereira 1994) (Gurevych 2005)

Lin (1998a)

7.1 Ranking word pairs
7.1.1 Data. Gurevych (2005) and Zesch et al. (2007) asked native German speakers to
mark two different sets of German word pairs with distance values. Set 1 (Gur65) is
the German translation of the English (Rubenstein and Goodenough 1965b) dataset. It
has 65 noun–noun word pairs. Set 2 (Gur350) is a larger dataset containing 350 word
pairs made up of nouns, verbs, and adjectives. The semantically close word pairs in
Gur65 are mostly synonyms or hypernyms (hyponyms) of each other, whereas those in
Gur350 have both classical and non-classical relations (Morris and Hirst 2004)with each
other. Details of these semantic distance benchmarks8 were listed earlier in Table 1.

7.1.2 Results and Discussion.Word-pair distances determined using different distance
measures are compared in twoways with the two human-created benchmarks. The rank
ordering of the pairs from closest to most distant is evaluated with Spearman’s rank
order correlation ρ; the distance judgments themselves are evaluated with Pearson’s
correlation coefficient r. The higher the correlation, the more accurate the measure is.
Spearman’s correlation ignores actual distance values after a list is ranked—only the
ranks of the two sets of word pairs are compared to determine correlation. On the other
hand, Pearson’s coefficient takes into account actual distance values. So even if two lists
are ranked the same, but one has distances between consecutively-ranked word-pairs
more in line with human-annotations of distance than the other, then Pearson’s coef-
ficient will capture this difference. However, this makes Pearson’s coefficient sensitive
to outlier data points, and so one must interpret it with caution. Therefore, Spearman’s
rank correlation is more common in the semantic distance literature. However, many of
the experiments on German data report Pearson’s correlation. We report both correla-
tions in Table 7.

Observe that on both datasets and by both measures of correlation, the cross-
lingual measures of concept-distance perform not just as well as the best monolingual
measures, but in fact slightly better. (Figure 10 depicts the results in a graph.) In general,
the correlations are lower for Gur350 as it contains cross-PoS word pairs and non-
classical relations, making it harder to judge even by humans (as shown by the inter-
annotator correlations for the datasets in Table 1). As per Spearman’s rank correlation,
α-skew divergence and Jensen-Shannon divergence perform best on both datasets. The
correlations of cosine and Lin’s distributional measure are not far behind. Amongst the
monolingual GermaNet measures, radial pseudo-gloss performs best. As per Pearson’s

8 The datasets are publicly available at
http://www.ukp.tu-darmstadt.de/data/semRelDatasets.
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Table 7
Ranking German word pairs: Correlations of distance measures with human judgments. The
best results obtained using monolingual and cross-lingual measures are marked in bold.

Gur65 Gur350
Spearman’s Pearson’s Spearman’s Pearson’s

Measure rank correlation correlation rank correlation correlation
Monolingual
hypernym pseudo-gloss 0.672 0.702 0.346 0.331
radial pseudo-gloss 0.764 0.565 0.492 0.420
Jiang and Conrath measure 0.665 0.748 0.417 0.410
Lin’s GermaNet measure 0.607 0.739 0.475 0.495
Resnik’s measure 0.623 0.722 0.454 0.466

Cross-lingual
α-skew divergence 0.794 0.597 0.520 0.413
cosine 0.778 0.569 0.500 0.212
Jensen-Shannon divergence 0.793 0.633 0.522 0.422
Lin’s distributional measure 0.775 0.816 0.498 0.514

Figure 10
Ranking German word pairs: Spearman’s rank correlation obtained when using the best
cross-lingual distributional concept-distance measure and that obtained when using the best
monolingual GermaNet-based measure.

correlation, Lin’s distributional measure performs best overall and radial pseudo-gloss
does best amongst the monolingual measures.

7.2 Solving word choice problems from Reader’s Digest
7.2.1 Data. Our next approach to evaluating distance measures follows that of Jarmasz
and Szpakowicz (2003), who evaluated semantic similarity measures through their
ability to solve synonym problems (80 TOEFL (Landauer and Dumais 1997), 50 ESL
(Turney 2001), and 300 (English) Reader’s DigestWord Power questions). Turney (2006)
used a similar approach to evaluate the identification of semantic relations, with 374
college-level multiple-choice word analogy questions.

Issues of the German edition of Reader’s Digest include a word choice quiz called
‘Word Power’. Each question has one targetword and four alternativewords or phrases;
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the objective is to pick the alternative that is most closely related to the target. For
example:9

Duplikat (duplicate)
a. Einzelstück (single copy) b. Doppelkinn (double chin)
c. Nachbildung (replica) d. Zweitschrift (copy)

Torsten Zesch compiled the Reader’s Digest Word Power (RDWP) benchmark for Ger-
man, which consists of 1072 of these word-choice problems collected from the January
2001 to December 2005 issues of the German-language edition (Wallace and Wallace
2005). Forty-four problems that had more than one correct answer and twenty problems
that used a phrase instead of a single term as the target were discarded. The remaining
1008 problems form our evaluation dataset, which is significantly larger than any of the
previous datasets employed in a similar evaluation.

We evaluate the various cross-lingual and monolingual distance measures by their
ability to choose the correct answer. The distance between the target and each of the
alternatives is computed by a measure, and the alternative that is closest is chosen. If
two or more alternatives are equally close to the target, then the alternatives are said to
be tied. If one of the tied alternatives is the correct answer, then the problem is counted
as correctly solved, but the corresponding score is reduced. The system assigns a score
of 0.5, 0.33, and 0.25 for 2, 3, and 4 tied alternatives, respectively (in effect approximating
the score obtained by randomly guessing one of the tied alternatives). If more than
one alternative has a sense in common with the target, then the thesaurus-based cross-
lingual measures will mark them each as the closest sense. However, if one or more of
these tied alternatives is in the same semicolon group of the thesaurus as the target, then
only these are chosen as the closest senses.10

Even though we discard questions from the German RDWP dataset that contained
a phrasal target, we did not discard questions that had phrasal alternatives simply
because of the large number of such questions. Many of these phrases cannot be found
in the knowledge sources (GermaNet or Macquarie Thesaurus via translation list). In
these cases, we remove stopwords (prepositions, articles, etc.) and split the phrase
into component words. As German words in a phrase can be highly inflected, all
components are lemmatized. For example, the target imaginär (imaginary) has nur in
der Vorstellung vorhanden (exists only in the imagination) as one of its alternatives. The
phrase is split into its component words nur, Vorstellung, and vorhanden. The system
computes semantic distance between the target and each phrasal component and selects
the minimum value as the distance between target and potential answer.

7.2.2 Results and Discussion. Table 8 presents the results obtained on the German
RDWP benchmark for both monolingual and cross-lingual measures. Only those ques-
tions for which themeasures have some distance information are attempted; the column
‘# attempted’ shows the number of questions attempted by each measure, which is the
maximum score that the measure can hope to get. Observe that the thesaurus-based
cross-lingual measures have a much larger coverage than the GermaNet-based mono-
lingual measures. The cross-lingual measures have a much larger number of correct

9 English translations are in parentheses.
10 Words in a thesaurus category are further partitioned into different paragraphs and each paragraph into

semicolon groups. Words within a semicolon group are more closely related than those in semicolon
groups of the same paragraph or category.
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Table 8
Solving word choice questions: Performance of monolingual and cross-lingual distance
measures. The best results for each class of measures are marked in bold.

Reader’s Digest Word Power benchmark
Measure # attempted # correct # ties Score P R F
Monolingual
hypernym pseudo-gloss 222 174 11 171.5 .77 .17 .28
radial pseudo-gloss 266 188 15 184.7 .69 .18 .29
Jiang and Conrath 357 157 1 156.0 .44 .16 .23
Lin’s GermaNet measure 298 153 1 152.5 .51 .15 .23
Resnik’s measure 299 154 33 148.3 .50 .15 .23

Cross-lingual
α-skew divergence 438 185 81 151.6 .35 .15 .21
cosine 438 276 90 223.1 .51 .22 .31
Jensen-Shannon divergence 438 276 90 229.6 .52 .23 .32
Lin’s distributional measure 438 274 90 228.7 .52 .23 .32

answers too (column ‘# correct’), but this number is bloated due to the large number
of ties. We see more ties when using the cross-lingual measures because they rely on
theMacquarie Thesaurus, a very coarse-grained sense inventory (around 800 categories),
whereas the monolingual measures operate on the fine-grained GermaNet. ‘Score’ is
the score each measure gets after it is penalized for the ties. The cross-lingual measures
cosine, Jensen-Shannon divergence, and Lin’s distributional measure obtain the highest
scores. But ‘Score’ by itself does not present the complete picture either as, given the
scoring scheme, a measure that attempts more questions may get a higher score just
from random guessing. We therefore present precision (P), recall (R), and F measure
(F):

P = Score
# attempted (15)

R = Score
1008 (16)

F = 2×P×R
P+R (17)

Figure 11 depicts the results in a graph. Observe that the cross-lingual measures have
a higher coverage (recall) than the monolingual measures but lower precision. The F
measures show that the best cross-lingual measures do slightly better than the best
monolingual ones, despite the large number of ties. The measures of cosine, Jensen-
Shannon divergence, and Lin’s distributional measure remain the best cross-lingual
measures, whereas hypernym pseudo-gloss and radial pseudo-gloss are the best mono-
lingual ones.

8. Related work

A detailed survey of WordNet-based semantic distance measures is given by Budanit-
sky and Hirst (2006). Patwardhan et al. (2003) also compare the performance of various
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Figure 11
Solving word choice questions: Performance of the best monolingual and cross-lingual distance
measures.

WordNet-based measures. See Curran (2004), Weeds et al. (2004), and Mohammad and
Hirst (2007) for comprehensive surveys of distributional measures of word-distance.

Yarowsky (1992) proposed a model for unsupervised word sense disambiguation
using Roget’s Thesaurus. A mutual information–like measure was used to identify words
that best represent each category in the thesaurus, which he calls the salient words. The
presence of a salient word in the context of a target word is evidence that the word
is used in a sense corresponding to the salient word. The evidence is incorporated in
a Bayesian model. The word-category co-occurrence matrix (WCCM) we created can
be seen as a means of determining the degree of salience of any word co-occurring
with a concept. We further improved the accuracy of the WCCM using a bootstrapping
technique.

Jarmasz and Szpakowicz (2003) use the taxonomic structure of the Roget’s Thesaurus
to determine semantic similarity. Two words are considered maximally similar if they
occur in the same semicolon group in the thesaurus. Then on, decreasing in similarity
are word pairs in the same paragraph, words pairs in different paragraphs belonging to
the same part of speech andwithin the same category, word pairs in the category, and so
on until word pairs which have nothing in common except that they are in the thesaurus
(maximally distant). However, a large number of words that are in different thesaurus
categories may be semantically related. Thus, this approach is better suited for estimat-
ing semantic similarity than semantic relatedness. Our approach is specifically intended
to determine the semantic relatedness between word pairs across thesaurus categories.

Pantel and Lin (2002) proposed a method to discover word senses from text using
word co-occurrence information. The approach produces clusters of words that are
semantically similar and there is a numeric score representing the distance of each
word in a cluster with the centroid of that cluster. Note that these clusters do not
have information of which words co-occur with the clusters (concepts) and so these are
not distributional profiles of concepts (DPCs). Rather, the output of the Pantel and Lin
system is more like a Roget’s or Macquaries Thesaurus, except that it is automatically
generated. One can create DPCs using our method and the Pantel and Lin thesaurus
(instead of Macquarie) and it will be interesting to determine its usefulness. However,
we suspect that there will be more complementarity between information encoded in a
human created lexical resource and the co-occurrence information in text.
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Pantel (2005) also provides a way to create co-occurrence vectors for WordNet
senses. The lexical co-occurrence vectors of words in a leaf node are propagated up
the WordNet hierarchy. A parent node inherits those co-occurrences that are shared
by its children. Lastly, co-occurrences not pertaining to the leaf nodes are removed
from its vector. Even though the methodology attempts to associate a WordNet node or
sense with only those co-occurrences that pertain to it, no attempt is made at correcting
the frequency counts. After all, word1–word2 co-occurrence frequency (or association) is
likely not the same as SENSE1–word2 co-occurrence frequency (or association), simply
because word1may have senses other than SENSE1, as well. Further, in Pantel’s system,
the co-occurrence frequency associated with a parent node is the weighted sum of co-
occurrence frequencies of its children. The frequencies of the child nodes are used as
weights. Sense ambiguity issues apart, this is still problematic because a parent concept
(say, BIRD) may co-occur much more frequently (or infrequently) with a word than its
children do. In contrast, the bootstrapped WCCM not only identifies which words co-
occur with which concepts, but also has more accurate estimates of the co-occurrence
frequencies.

Patwardhan and Pedersen (2006) create aggregate co-occurrence vectors for a
WordNet sense by adding the co-occurrence vectors of the words in its WordNet gloss.
The distance between two senses is then determined by the cosine of the angle between
their aggregate vectors. However, such aggregate co-occurrence vectors are expected to
be noisy because they are created from data that is not sense-annotated. The bootstrap-
ping procedure introduced in Section 4.3.2 minimizes such errors and, as we showed in
Mohammad and Hirst (2006a),markedly improves accuracies of natural language tasks
that use these co-occurrence vectors.

Véronis (2004) presents a graph theory–based approach to identify the various
senses of a word in a text corpus without the use of a dictionary. For each target word,
a graph of inter-connected nodes is created. Every word that co-occurs with the target
word is a node. Two nodes are connected with an edge if they are found to co-occur
with each other. Highly interconnected components of the graph represent the different
senses of the target word. The node (word) with the most connections in a component
is representative of that sense and its associations with words that occur in a test
instance are used to quantify evidence that the target word is used in the corresponding
sense. However, these strengths of association are at best only rough estimates of the
associations between the sense and co-occurring words, since a sense in his system is
represented by a single (possibly ambiguous) word.

Erk and Padó (2008) proposed a way of determining the distributional profile of
a word in context. They use dependency relations and selectional preferences of the
target words and combine multiple co-occurrence vectors in a manners so as to give
more weight to co-occurring words pertaining to the intended senses of the target
words. This approach effectively assumes that each occurrence of a word in a different
context has a unique meaning. In contrast, our approach explores the use of only about a
thousand very coarse concepts to represent the meaning of all words in the vocabulary.
By choosing to work with much coarser concepts, the approach foregoes the ability
to make fine-grained distinctions in meaning, but is able to better estimate semantic
distance between the coarser concepts as there is much more information pertaining to
them.
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9. Conclusion

We proposed an approach that allows distributional measures to estimate semantic
distance between concepts using a published thesaurus and raw text. Additionally, we
showed how this approach can be ported into a cross-lingual framework to determine
semantic distance in a resource-poor language by combining its text with a knowledge
source in a different, preferably resource-rich, language. We evaluated the approach
both monolingually and cross-lingually in comparison with traditional word-distance
measures and WordNet-like resource-based concept-distance measures.

The monolingual evaluation required the automatic measures to (1) rank word-
pairs in order of their human-judged linguistic distance, and (2) correct real-word
spelling errors. The distributional concept-distance measures outperformed word-
distance measures in both tasks. They do not perform aswell as the bestWordNet-based
measures in ranking a small set of word pairs, but in the task of correcting real-word
spelling errors, they beat all WordNet-based measures except for Jiang–Conrath (which
is markedly better) and Leacock–Chodorow (which is slightly better if we consider
correction performance as the bottom-line statistic, but slightly worse if we rely on
correction ratio). It should be noted that the Rubenstein and Goodenough word-pairs
used in the ranking task, as well as all the real-word spelling errors in the correction task,
are nouns. We expect that theWordNet-basedmeasures will perform poorly when other
parts of speech are involved, as those hierarchies of WordNet are not as extensively
developed. Further, the various hierarchies are not well connected, nor is it clear how
to use these interconnections across parts of speech for calculating semantic distance.
On the other hand, the distributional concept-distance measures do not rely on any
hierarchies (even if they exist in a thesaurus) but on sets of words that unambiguously
represent each sense. Further, because our measures are tied closely to the corpus from
which co-occurrence counts are made, we expect the use of domain-specific corpora to
give even better results.

We evaluated the cross-lingual measures against the best monolingual ones oper-
ating on a WordNet-like resource, GermaNet, through an extensive set of experiments
on two different tasks: (1) rank German word-pairs in order of their human-judged
linguistic distance, and (2) solve German ‘Word Power’ questions from Reader’s Digest.
Even with the added ambiguity of translating words from one language to another, the
cross-lingual measures performed slightly better than the best monolingual measures
on both the word-pair task and the Reader’s Digest word-choice task. Further, in the
word-choice task, the cross-lingual measures obtained a significantly higher coverage
than the monolingual measure. The richness of English resources seems to have a major
impact, even though German, with GermaNet, a well-established resource, is in a better
position than most other languages. This is indeed promising, because obtaining broad
coverage for resource-poor languages remains an important goal as we integrate state-
of-the-art approaches in natural language processing into real-life applications. These
results show that the proposed algorithm can successfully combine German text with
an English thesaurus using a bilingual German–English lexicon to obtain state-of-the-
art results in measuring semantic distance. These results also support the broader claim
that natural language problems in a resource-poor language can be solved using a
knowledge source in a resource-rich language (for example the cross-lingual PoS tagger
of Cucerzan and Yarowsky (2002)). Cross-lingual DPCs also have tremendous potential
in tasks inherently involving more than one language. We believe that the future of
natural language processing lies not in standalone monolingual systems but in those
that are powered by automatically created multilingual networks of information.
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Thus distributional measures of concept-distance have most of the attractive fea-
tures of a distributional measure, and yet avoid to some extent the problems associated
with word-distance measures. They do not conflate sense information (mitigating the
limitation described in Section 3.2.1). They need a matrix of size only about 1000 by
1000 to store all pre-computed distances (mitigating limitation of Section 3.3). As they
calculate distance between coarse senses, each represented bymanywords, even if some
words are not seen often in a text corpus, all concepts have sufficient representation even
in small corpora, they avoid the data sparseness problem (limitation of Section 3.2.2).
And lastly, they can be used cross-lingually so that a high-quality knowledge source
in a resource-rich language can be leveraged to solve semantic distance problems in a
resource-poor language (mitigating the limitation described in 3.1.1).
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