Determining Word Sense Dominance Using a Thesaurus

Saif Mohammad and Graeme Hirst Department of Computer Science University of Toronto

EACL, Trento, Italy (5th April, 2006)

Copyright © 2006, Saif Mohammad and Graeme Hirst

Determining Word Sense Dominance using a Thesaurus. Saif Mohammad and Graeme Hirst. 1

Word Sense Dominance

star (CELESTIAL BODY) star (CELEBRITY)

The **degree of dominance of a sense** of a word is the proportion of occurrences of that sense in text.

- Applications:
 - Sense disambiguation, document clustering, ...

McCarthy et al.'s Method

- D = dominance method
 - Requires WordNet.
 - Needs auxiliary text with similar sense distribution.
 - Requires retraining (Lin's thesaurus).

Our Method

WCCM = word–category co-occurrence matrix

- We use a published thesaurus.
- Auxiliary text need not have similar sense distribution.
- No retraining is needed (WCCM created just once).

Published Thesauri

- E.g., *Roget's* (English), *Macquarie* (English), *Cilin* (Chinese), *Bunrui Goi Hyou* (Japanese)
- Vocabulary divided into about 1000 categories
 - Words in a category (category terms or c-terms) are closely related.
 - A category very roughly corresponds to a sense (Yarowsky, 1992).
- One word, more than one category
 - *bark* in ANIMAL NOISES and MEMBRANE.

Why a Thesaurus?

- Coarse senses: WordNet is much too fine grained.
- Computational ease: With just 1000 categories, the wordcategory co-occurrence matrix is of manageable size.
- Availability: Thesauri are available in many languages.
- Words for a sense: Each sense can be represented unambiguously with a set of (possibly ambiguous) words.

Word–Category Matrix

	<i>c</i> ₁	<i>c</i> ₂	• • •	Cj	• • •
w_1	m_{11}	<i>m</i> ₁₂	• • •	m_{1j}	• • •
w ₂	<i>m</i> ₂₁	m_{22}	• • •	m_{2j}	• • •
• •	•	•	••••	• • •	• • •
Wi	m_{i1}	m_{i2}	• • •	m _{ij}	• • •
• •	• •	• •	• •	• •	••••

- WCCM: categories (thesaurus) vs. words (vocabulary)
- Cell m_{ij}: number of times word w_i co-occurs with a c-term listed in category c_j
- Text: most of the *BNC*

cell (space, CELESTIAL BODY) incremented by 1 cell (space, CELEBRITY) incremented by 1

X: star, nova, constellation, sun, empty, web

				CELESTIAL	
	<i>C</i> ₁	<i>C</i> ₂	• • •	BODY	• • •
w_1	<i>m</i> ₁₁	<i>m</i> ₁₂	• • •	m_{1j}	• • •
w ₂	<i>m</i> ₂₁	m_{22}	• • •	m_{2j}	• • •
•	•	• •	•	• • •	• • •
space	m_{i1}	m_{i2}	• • •	$m\uparrow\uparrow$	• • •
• • •	• •	• •	• •	• • •	••••

Contingency Table for *w* and *c*

Applying a statistic gives the strength of association (SoA)

- cosine
- Dice

- pointwise mutual information
- Yule's coefficient of colligation
- odds ratio

Evidence for the Senses

Base WCCM

- Matrix created after the first pass of unannotated text
 - noisy
 - captures strong associations
- Words that occur close to a target word
 - Good indicators of intended sense
 - Co-occurrence frequency used as evidence

Bootstrapping the WCCM

- Second pass of the auxiliary corpus
 - Word sense disambiguation: using co-occurring words and evidence from base WCCM
- New, more accurate, WCCM
 - Cell m_{ij}: number of times word used in sense c_j
 co-occurs with w_i

Four Methods

	Weighted voting	Unweighted voting
Implicit sense disambiguation	$D_{I,W}$	$D_{I,U}$
Explicit sense disambiguation	$D_{E,W}$	$D_{{\it E},{\it U}}$

The stronger the association of a sense with its co-occurring words, the higher is its dominance.

- Weighted vote (SoA) to each sense or unweighted vote to sense with the highest SoA
- Explicit word sense disambiguation or not

Method: $D_{I,W}$

- Each word that co-occurs with the target word *t* gives a weighted vote (SoA) to each sense.
- Dominance of a sense *c* is the proportion of votes it gets.

$$D_{I,W}(t,c) = \frac{\sum_{w \in T} SoA(w,c)}{\sum_{c' \in senses(t)} \sum_{w \in T} SoA(w,c')}$$

T is the set of all words that co-occur with t.

Method: $D_{I,U}$

- Each word that co-occurs with the target word gives an unweighted, equal vote to a winner sense.
 - Sense with highest strength of association with cooccurring words
- Dominance of a sense is the proportion of votes it gets.

$$D_{I,U}(t,c) = \frac{|\{w \in T : \operatorname{argmax}_{c' \in \operatorname{senses}(t)} SoA(w,c') = c\}|}{|T|}$$

Methods: $D_{E,W}$ and $D_{E,U}$

- Explicit sense disambiguation
 - Votes from co-occurring words
 - Votes can be weighted or unweighted
- Dominance of a sense
 - Proportion of occurrences pertaining to that sense

Experimental Setup

- Naïve sense disambiguation system
 - Gives predominant sense as output
- Test datasets
 - Different sense distributions of the two most dominant senses of each target word

Sense-tagged Data

We created pseudo-thesaurus-sense-tagged data for the 27 head words in SENSEVAL-1 English Sample Space using the held out subset of *BNC*.

Non-monosemous target word: *brilliant* Category: INTELLIGENCE

Monosemous c-term: *clever* Sentence from auxiliary text: *Hermione had a clever plan*. Sense annotated sentence:

Hermione had a brilliant//INTELLIGENCE plan.

•
$$D_{E,W}$$
: .02
pmi, odds, Yule

- $D_{E,W}$: .02 pmi, odds, Yule
- *D_{I,W}*: .03 pmi

- $D_{E,W}$: .02 pmi, odds, Yule
- $D_{I,W}$: .03
- $D_{I,U}$: .11
 - phi, pmi, odds, Yule
- $D_{E,U}$: .16 phi, pmi, odds, Yule

Observations

- Weighted methods are better
 - Explicit or implicit disambiguation does not matter
 - Odds, pmi, and Yule are better

Effect of Bootstrapping

Effect of Bootstrapping

Effect of Bootstrapping

- Most of the gain given by the first iteration.
- Relative behavior of measures more or less the same.

In Summary

- New methods for determining sense dominance
 - Raw text and a published thesaurus
 - No similarly-sense-distributed text or re-training
- Extensive experiments
 - Synthetically created thesaurus-sense-tagged data
- Results are close to the upper bound

Future Work

WCCM has applications beyond sense dominance.

• Linguistic distances

Distributional distance of concepts

• Word sense disambiguation

Unsupervised naïve Bayes classifier

• Machine translation

Domain-specific translational dominance

• Document clustering

Represent document in concept space