Measuring Semantic Distance

using Distributional Profiles of Concepts

Saif Mohammad

Department of Computer Science University of Toronto

Grateful acknowledgments: Graeme Hirst (advisor and co-author); Iryna Gurevych, Torsten Zesch, and Philip Resnik (co-authors); Rada Mihalcea, Renee Miller, Gerald Penn, Suzanne Stevenson, University of Toronto (especially the CL group), and NSERC.

Semantic Distance

A measure of how close or distant two units of language are in terms of their meaning

Why measure semantic distance?

- Natural language processing is teeming with semanticdistance problems:
 - Machine translation

You know a person by the company they keep

bag of hypotheses

Das Wesen eines Menschen erkennt man an der Gesellschaft, mitder er sich umgibt

Why measure semantic distance?

- Natural language processing is teeming with semanticdistance problems:
 - Word sense disambiguation

Hermione cast a bewitching spell

bag of hypotheses

CHARM OR INCANTATION

Why measure semantic distance?

- Natural language processing is teeming with semanticdistance problems:
 - Speech recognition, real-word spelling correction

... interest ... money ... band ... loan ...

bank or bond

bag of hypotheses

Knowledge source-based semantic measures

- Structure of a network or resource
 - The nodes represent senses or concepts
 - Examples: Resnik (1995), Jiang and Conrath (1997)
- Drawbacks
 - Resource bottleneck
 - Not easily domain-adaptable
 - Accuracy on pairs other than noun—noun is poor
 - Relatedness estimation is poor

Corpus-based distributional measures

- Words in similar contexts are close.
 - Distributional profile (DP) of a word: strength of association of the word with co-occurring words in text

DP of a word

DP of fusion

DPs of words

DP of star

space 0.21

movie 0.16

famous 0.15

light 0.12

rich 0.11

heat 0.08

planet 0.07

hydrogen 0.07

DP of fusion

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

gravity 0.03

pressure 0.03

DP of star

space 0.21 *movie* 0.16 famous 0.15 *light* 0.12 rich 0.11 *heat* 0.08 planet 0.07 hydrogen 0.07

DP of fusion

DP of star

space 0.21

movie 0.16

famous 0.15

light 0.12

rich 0.11

heat 0.08

planet 0.07

hydrogen 0.07

DP of fusion

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

gravity 0.03

pressure 0.03

DP of star

space 0.21 *movie* 0.16 famous 0.15 *light* 0.12 rich 0.11 heat 0.08 planet 0.07 hydrogen 0.07

DP of fusion

DP of star

movie 0.16 famous 0.15 *light* 0.12 rich 0.11

heat 0.08

planet 0.07

space 0.21

hydrogen 0.07

DP of fusion

DP of star

hydrogen 0.07

space 0.21 *movie* 0.16 famous 0.15 *light* 0.12 *rich* 0.11 heat 0.08 planet 0.07

DP of fusion

Distributional measures of word-distance

- Words in similar contexts are close.
 - Distributional profile (DP) of a word: strength of association of the word with co-occurring words (text)
 - Distributional measure: distance between DPs Cosine, Lin, α-skew divergence
- Drawback
 - Poor accuracy (albeit higher coverage)
 - Conflation of word senses

Problem with distributional word-distance measures

DP of star

space 0.21

movie 0.16

famous 0.15

light 0.12

rich 0.11

heat 0.08

planet 0.07

hydrogen 0.07

DP of fusion

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

gravity 0.03

pressure 0.03

Problem with distributional word-distance measures

DP of star

space 0.21

movie 0.16 **←**

famous 0.15

light 0.12

rich 0.11

heat 0.08

planet 0.07

hydrogen 0.07

DP of fusion

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

gravity 0.03

pressure 0.03

Word sense ambiguity reduces accuracy of distance measures

Shared limitations

- Precomputing all distances is computationally expensive
 - WordNet-based measures:

 $117,000 \times 117,000$ sense—sense distance matrix

Distributional measures:

 $100,000 \times 100,000$ word—word distance matrix

Monolingual

A new hybrid approach

- Combines a knowledge source with text
 - Thesaurus categories: concepts/coarse senses
 - Most published thesauri: around 1000 categories
- Profiles concepts (rather than words)
 - Uses sets of words to represent each concept
 - Creates profiles using bootstrapping

Features

- Can be used in real-time applications
 - Concept–concept distance matrix: only 1000 × 1000
- Accurate for all pos—pos pairs
 - Not just noun—noun
- Capable of giving both similarity and relatedness values
- Easily domain adaptable
- Cross-lingual

Problem with distributional word-distance measures

DP of star

```
space 0.21
movie 0.16
famous 0.15←
light 0.12
rich 0.11
heat 0.08
planet 0.07
hydrogen 0.07
```

Word sense ambiguity reduces accuracy of distance measures

Solution: tease out the senses

star

space

movie 🛨

famous -

light

rich

heat

planet

hydrogen

Solution: tease out the senses

star

space

movie 💳 famous 🖚

light

rich

heat planet hydrogen

Profile the senses separately.

Distributional profiles of concepts

DPs of the concepts referred to by *star*:

space 0.36	famous 0.24
light 0.27	<i>movie</i> 0.14
heat 0.11	rich 0.14
planet 0.07	fan 0.10
hydrogen 0.06	hot 0.04
hot 0.01	fashion 0.01

Distributional profiles of concepts

DPs of the concepts referred to by *star*:

DP of	CEI	ESTIA	I.RC	DY
<i>1</i> 71 (71				

(celestial body, star, sun,...)

space 0.36

light 0.27

heat 0.11

planet 0.07

hydrogen 0.06

hot 0.01

DP of CELEBRITY

(celebrity, hero, star,...)

famous 0.24

movie 0.14

rich 0.14

fan 0.10

hot 0.04

fashion 0.01

DP of FUSION

(atomic reaction, fusion, thermonuclear reaction,...)

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

DP of CELEBRITY

(celebrity, hero, star,...)

famous 0.24

movie 0.14

rich 0.14

fan 0.10

hot 0.04

fashion 0.01

DP of FUSION

(atomic reaction, fusion, thermonuclear reaction,...)

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

First, consider the CELEBRITY sense of *star*.

DP of CELEBRITY	DP of FUSION
(celebrity, hero, star,)	(atomic reaction, fusion, thermonuclear reaction,)
famous 0.24	heat 0.16
movie 0.14	hydrogen 0.16
rich 0.14	energy 0.13
fan 0.10	— hot 0.09
hot 0.04	light 0.09
fashion 0.01	space 0.04

First, consider the CELEBRITY sense of star.

Distributionally NOT close

DP of FUSION

(atomic reaction, fusion, thermonuclear reaction,...)

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

DP of FUSION DP of CELESTIAL BODY

(celestial body, star, sun...)

space 0.36

light 0.27

heat 0.11

planet 0.07

hydrogen 0.07

hot 0.07

(atomic reaction, fusion, thermonuclear reaction,...)

heat 0.16

hydrogen 0.16

energy 0.13

hot 0.09

light 0.09

space 0.04

Then, consider the CELESTIAL BODY sense of star.

DP of CELESTIAL BODY DP of FUSION (celestial body, star, sun...) (atomic reaction, fusion, thermonuclear reaction,...) heat 0.16 *space* 0.36 *light* 0.27 hydrogen 0.16 energy 0.13 heat 0.11 planet 0.07 hot 0.09 *light* 0.09 hydrogen 0.07 hot 0.07 *space* 0.04

Then, consider the CELESTIAL BODY sense of star.

- Distributionally close
- Word sense ambiguity NOT a problem

Ranking word pairs

(Monolingual)

Correcting spelling errors

(Monolingual)

But...

Application of distance algorithms in most languages is hindered by a lack of high-quality linguistic resources.

So: Make it cross-lingual

- Determining distance in a resource-poor language
 - Combine its text with a thesaurus from a (possibly) resource-rich) language
 - Largely alleviates the knowledge-source bottleneck
 - Use a bilingual lexicon
 - Without parallel corpora or sense-annotated data
- Experiments: German as a "resource-poor" language

Stern

Bank

 \rightarrow Wde

German words w^{de}

Cross-lingual links

German words w^{de}

English translations w^{en} (German–English lexicon)

Cross-lingual links

German words w^{de}

English translations w^{en} (German–English lexicon)

English concepts c^{en} (English thesaurus)

Dealing with ambiguity

The concepts of CELEBRITY, RIVER BANK and JUDICIARY are semantically unrelated to Stern and Bank.

Losing the English words

Losing the English words

Losing the English words

Cross-lingual candidate senses of German words Stern and Bank

Cross-lingual DPCs

Cross-lingual DPs of the concepts referred to by *star*:

DP of **CELESTIAL BODY**

DP of CELESTIAL BODY(celestial body, star, sun,...) **DP of CELEBRITY**(celebrity, hero, star,...)

English

Cross-lingual DPCs

Cross-lingual DPs of the concepts referred to by *star*:

DP of CELESTIAL BODY	DP of CELEBRITY	→ English
(celestial body, star, sun,)	(celebrity, hero, star,)	Liighsh
Raum 0.36	berühmt 0.24	→ German
<i>Licht</i> 0.27	Film 0.14	
Hitze 0.11	reich 0.14	
Planet 0.07	Fan 0.10	
Wasserstoff 0.06	$hei\beta~0.04$	
$hei\beta~0.01$	<i>Mode</i> 0.01	

Ranking word pairs

(Cross-lingual)

dataset and correlation-measure

Solving word choice problems

(Cross-lingual)

word ... word ... target word ... word ... word

CONCEPT2

CONCEPT1

word ... word ... target word ... word ... word

CONCEPT2

Word sense dominance and word sense disambiguation:

Obviate the need of sense-annotated data

Word sense dominance

Mean distance below upper bound = 0.02

Unsupervised Naïve Bayes word sense classifier

- Estimated probabilities from the DPC
- Took part in SemEval-07's:
 - English Lexical Sample Task
 - Only one percentage point behind the best unsupervised system
 - Multilingual Chinese–English Lexical Sample Task
 - Placed clear first among unsupervised systems

Accomplishments (1)

- Performed a qualitative and quantitative comparison of WordNet-based and distributional measures
- Identified significant limitations of state-of-the-art approaches to measuring semantic distance
 - Word sense ambiguity
 - A hurdle for distributional measures

Accomplishments (2)

- Proposed a new hybrid approach to semantic distance
 - Combines text with a thesaurus
 - Models concepts (rather than words)
 - Uses thesaurus categories as very coarse senses

Accomplishments (3)

- Extensive evaluation
 - Monolingual
 - By combining English text with an English thesaurus
 - Ranked word pairs
 - Corrected real-word spelling errors
 - Determined word sense dominance
 - Did word sense disambiguation

Accomplishments (4)

- Extensive evaluation (continued)
 - Cross-lingual
 - By combining German text with an English thesaurus
 - Ranked word pairs and solving word-choice problems in German
 - By combining Chinese text with an English thesaurus
 - Identified the English translations of Chinese words from their contexts

Future work

- Adding cross-lingual semantic distance as a feature to a state-of-the-art MT system (with Philip Resnik)
- Cross-lingual document clustering
- Cross-lingual information retrieval
- Cross-lingual summarization (with Bonnie Dorr)
- Determining paraphrases, lexical entailment, and contradictions (with Bonnie Dorr)
- Determining cognates using semantic distance between words in different languages (with Greg Kondrak)
- Porting the approach to Wikipedia (with Torsten Zesch) and Iryna Gurevych)

- Distributional profiles of concepts can be used to infer their semantic properties, and indeed estimate semantic distance.
- Cross-lingual DPCs allow for a seamless transition from words in one language to concepts in another.

• Distributional measures of concept-distance are markedly superior to previous approaches.

- Distributional measures of concept-distance are markedly superior to previous approaches.
 - Works well for all pos pairs

- Distributional measures of concept-distance are markedly superior to previous approaches.
 - Works well for all pos pairs
 - Gives both relatedness and similarity

- Distributional measures of concept-distance are markedly superior to previous approaches.
 - Works well for all pos pairs
 - Gives both relatedness and similarity
 - Domain adaptable

- Distributional measures of concept-distance are markedly superior to previous approaches.
 - Works well for all pos pairs
 - Gives both relatedness and similarity
 - Domain adaptable
 - Can be used in real-time systems

- Distributional measures of concept-distance are markedly superior to previous approaches.
 - Works well for all pos pairs
 - Gives both relatedness and similarity
 - Domain adaptable
 - Can be used in real-time systems
 - Cross-lingual
 - Solve problems in a one language using a knowledge source from another
 - Solve problems that involve multiple languages