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Semantic distanceis a measure of how close or distant in meaning two units of language are.

A large number of important natural language problems, including machine translation and

word sense disambiguation, can be viewed as semantic distance problems. The two dominant

approaches to estimating semantic distance are theWordNet-based semantic measuresand

thecorpus-based distributional measures. In this thesis, I compare them, both qualitatively

and quantitatively, and identify the limitations of each.

This thesis argues that estimating semantic distance is essentially a property of concepts

(rather than words) and that two concepts are semantically close if they occur in similar con-

texts. Instead of identifying the co-occurrence (distributional) pro�les ofwords(distributional

hypothesis), I argue thatdistributional pro�les of concepts (DPCs) can be used to infer the

semantic properties of concepts and indeed to estimate semantic distance more accurately. I

propose a new hybrid approach to calculating semantic distance that combines corpus statis-

tics and a published thesaurus (Macquarie Thesaurus). The algorithm determines estimates of

the DPCs using the categories in the thesaurus as very coarseconcepts and, notably, without

requiring any sense-annotated data. Even though the use of only about 1000 concepts to repre-

sent the vocabulary of a language seems drastic, I show that the method achieves results better

than the state-of-the-art in a number of natural language tasks.

I show howcross-lingual DPCscan be created by combining text in one language with
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a thesaurus from another. Using these cross-lingual DPCs, we can solve problems in one,

possibly resource-poor, language using a knowledge sourcefrom another, possibly resource-

rich, language. I show that the approach is also useful in tasks that inherently involve two or

more languages, such as machine translation and multilingual text summarization.

The proposed approach is computationally inexpensive, it can estimate both semantic re-

latedness and semantic similarity, and it can be applied to all parts of speech. Extensive exper-

iments on ranking word pairs as per semantic distance, real-word spelling correction, solving

Reader's Digestword choice problems, determining word sense dominance, word sense dis-

ambiguation, and word translation show that the new approach is markedly superior to previous

ones.
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Chapter 1

Semantic Distance

1.1 Introduction

Semantic distanceis a measure of how close or distant two units of language are,in terms

of their meaning. The units of language may be words, phrases, sentences, paragraphs, or

documents. The two nounsdanceandchoreography, for example, are closer in meaning than

the two nounsclownandbridge, and so are said to be semantically closer. Units of language,

especially words, may have more than one possible meaning. However, their context may be

used to determine the intended senses. For example,star can mean bothCELESTIAL BODY

andCELEBRITY; however,star in the sentence below refers only toCELESTIAL BODY and is

much closer tosunthan tofamous:

(1) Stars are powered by nuclear fusion.

Thus, semantic distance between words in context is in fact the distance between word senses

or concepts. I use the termsword sensesandconceptsinterchangeably here, although later on

I will make a distinction. Figure 1.1 depicts that the concepts of DANCE andCHOREOGRAPHY

are closer in meaning than the concepts ofCLOWN andBRIDGE. Throughout the thesis, exam-

ple words will be written in italics (as in the example sentence above), whereas example senses

or concepts will be written in all capitals (as in Figure 1.1).

1
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DANCE CHOREOGRAPHY

CLOWN BRIDGE

Figure 1.1: Semantic distance between example concepts.

Humans consider two concepts to be semantically close if there is a sharing of some mean-

ing. Speci�cally, two concepts are semantically close if there is alexical semantic relation

between the concepts. Putting it differently, the reason why two concepts are considered se-

mantically close can be attributed to a lexical semantic relation that binds them. According to

Cruse (1986), a lexical semantic relation is the relation betweenlexical units—a surface form

along with a sense. As he points out, the number of semantic relations that bind concepts is in-

numerable but certain relations, such as hyponymy, meronymy, antonymy, and troponymy, are

more systematic and have enjoyed more attention in the linguistics community. However, as

Morris and Hirst (2004) point out these relations are far out-numbered by others which they call

non-classical relations. Here are a few of the kinds of non-classical relations they observed:

positive qualities (BRILLIANT , KIND ), concepts pertaining to a concept (KIND , CHIVALROUS,

FORMAL pertaining toGENTLEMANLY ), and commonly co-occurring words (locations such as

HOMELESS, SHELTER; problem–solution pairs such asHOMELESS, DRUNK).
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not semantically related and not semntically similar
semantically related but not semantically similar
semantically related and semantically similar

scalpel–sand

doctor–surgeon

surgeon–scalpel

Figure 1.2: A Venn diagram of word pairs in semantic distancespace.

1.1.1 Semantic relatedness and semantic similarity

Semantic distance is of two kinds:semantic similarity andsemantic relatedness. The for-

mer is a subset of the latter (Figure 1.2), but the two may be used interchangeably in certain

contexts, making it even more important to be aware of their distinction. Two concepts are

considered to be semantically similar if there is a hyponymy(hypernymy), antonymy, or tro-

ponymy relation between them. Two concepts are considered to be semantically related if there

is any lexical semantic relation between them—classical ornon-classical.

Semantically similar concepts tend to share a number of common properties. For example,

considerAPPLES and BANANAS. They are both hyponyms ofFRUIT. They are both edible,

they grow on trees, they have seeds, etc. Therefore,APPLES and BANANAS are considered

to be semantically similar. Another example of a semantically similar pair is DOCTOR and

SURGEON. The concept of aDOCTOR is a hypernym ofSURGEON. Therefore, they share the

properties associated with aDOCTOR.

On the other hand, semantically related concepts may not have many properties in com-

mon, but have at least one classical or non-classical lexical relation between them which lends

them the property of being semantically close. For example,DOOR andKNOB are semantically

related as one is the meronym (is part) of another. The concept pairs,DOCTOR andSURGEON

are semantically related (as well as being semantically similar) as one is the hyponym of the
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other. Example pairs considered semantically related due to non-classical relations include

SURGEON–SCALPEL andTREE–SHADE. Note that semantic similarity entails semantic relat-

edness (Figure 1.3 (a)) but the converse need not be true (Figure 1.3 (b)).

1.1.2 Can humans estimate semantic distance?

Many will agree that humans are adept at estimating semanticdistance, but consider the fol-

lowing questions. How strongly will two people agree/disagree on distance estimates? Will

the agreement vary over different sets of concepts? In our minds, is there a clear distinction be-

tween related and unrelated concepts or are concept-pairs spread across the whole range from

synonymous to unrelated? Some of the earliest work that begins to answer these questions is

by Rubenstein and Goodenough (1965a). They conducted quantitative experiments with hu-

man subjects (51 in all) who were asked to rate 65 English wordpairs on a scale from 0.0 to

4.0 as per their semantic distance. The word pairs chosen ranged from almost synonymous

to unrelated. However, they were all noun pairs and those that were semantically close were

semantically similar; the dataset did not contain word pairs that are semantically related but

not semantically similar (word pairs pertaining to theregion of Figure 1.2). The subjects re-

peated the annotation after two weeks and the new distance values had a Pearson's correlationr

of 0.85 with the old ones. Miller and Charles (1991) also conducted a similar study on 30 word

pairs taken from the Rubenstein-Goodenough pairs. These annotations had a high correlation

(r = 0:97) with the mean annotations of Rubenstein and Goodenough (1965a). Resnik (1999)

repeated these experiments and found the inter-annotator agreement (r) to be 0.90.

Resnik and Diab (2000) conducted annotations of 48 verb pairs and found inter-annotator

agreement (r) to be 0.76 (when the verbs were presented without context) and 0.79 (when pre-

sented in context). Gurevych (2005) and Zesch et al. (2007b)asked native German speakers

to mark two different sets of German word pairs with distancevalues. Set 1 was a German

translation of the Rubenstein and Goodenough (1965a) dataset. It had 65 noun–noun word

pairs. Set 2 was a larger dataset containing 350 word pairs made up of nouns, verbs, and
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DOCTOR SURGEON

semantic similarity

DOCTOR SURGEON

semantic relatedness

(a) Concept pair that is semantically related and semantically similar.

SURGEON SCALPEL

semantic relatedness

SURGEON SCALPEL

semantic similarity

(b) Concept pair that is semantically related but not semantically similar.

Figure 1.3: Examples



CHAPTER 1. SEMANTIC DISTANCE 6

Table 1.1: Different datasets that are manually annotated with distance values. Pearson's cor-

relation was used to determine inter-annotator agreement (last column).

Dataset Year Language # pairs PoS # subjects Agreement

Rubenstein and Goodenough 1965 English 65 N 51 -

Miller and Charles 1991 English 30 N - .90

Resnik and Diab 2000 English 27 V - .76 and .79

Gurevych 2005 German 65 N 24 .81

Zesch and Gurevych 2006 German 350 N, V, A 8 .69

adjectives. The semantically close word pairs in the 65-word set were mostly synonyms or hy-

pernyms (hyponyms) of each other, whereas those in the 350-word set had both classical and

non-classical relations with each other. Details of thesesemantic distance benchmarksare

summarized in Table 1.1. Inter-subject agreements (last column in Table 1.1) are indicative of

the degree of ease in annotating the datasets. The high agreement and correlation values sug-

gest that humans are quite good and consistent at estimatingsemantic distance of noun-pairs;

however, annotating verbs and adjectives and a combinationof parts of speech is harder. This

also means that estimating semantic relatedness is harder than estimating semantic similarity.

It should be noted here that even though the annotators were presented with word-pairs and not

concept-pairs, it is reasonable to assume that they were annotated as per their closest senses.

For example, given the noun pairbankandinterest, most if not all will identify it as semanti-

cally related even though both words have more than one senseand many of the sense–sense

combinations are unrelated (for example, theRIVER BANK sense ofbankand theSPECIAL

ATTENTION sense ofinterest).

Apart from proving that humans can indeed estimate semanticdistance, these datasets act

as “gold standards” to evaluate automatic distance measures. However, lack of large amounts

of data from human subject experimentation limits the reliability of this mode of evaluation.

Therefore automatic distance measures are also evaluated by their usefulness in natural lan-

guage tasks such as those described in the next section.
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1.1.3 Pervasiveness of semantic distance in natural language processing

A large number of problems in natural language processing are in essence semantic-distance

problems. Machine translation systems must choose a translation hypothesis in the target lan-

guage that is semantically closest, if not identical, to thesource language text. Paraphrases

are pieces of text that can be used more or less interchangeably and can be identi�ed by their

property of being semantically close. The same is true, albeit to a lesser extent, for a phrase

that entails another. Information retrieval involves the selection of documents closest in content

to the query terms. Query-based summarization requires, among other things, choosing those

sentences to be part of the summary that are closest to the query. Document clustering is the

grouping of semantically close pieces of text. Discoveringword senses from their usage in-

volves grouping the usages so that those in the same group aresemantically close to each other

whereas those in different groups are distant—each such group represents a sense of the target.

Word sense disambiguation is the identi�cation of the senseclosest to a particular instance of

the target word. Identifying idioms and speci�c idiomatic usages of multiword expressions

involves determining whether a usage (or a set of usages) of the expression is semantically dis-

tant from the usages of its components—if they are more distant, then the probability that the

expression is used in a non-literal sense is higher. Real-word spelling errors can be detected by

identifying words that are semantically distant from theircontext and the existence of a spelling

variant that is close (Hirst and Budanitsky, 2005). Word completion and prediction algorithms

rank those candidate words higher that are semantically close to the preceding context.

Thus, semantic distance plays a key role in natural languageprocessing. As measures of

semantic distance between concepts can be extended to calculate the distance between larger

units of language, such as phrases and documents, understanding and improving these mea-

sures will have a signi�cant and wide-ranging impact (see Table 1.2 for some recent applica-

tions). In this thesis, I will identify some of the key drawbacks and limitations of state-of-

the-art distance measures, and propose a new class of measures that not only overcomes those

problems but also lends itself for use in more tasks through its substantially new capabilities.
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Table 1.2: Natural language tasks that have been attempted with measures of semantic distance.

Natural Language Task Approaches that use semantic distance

Cognates (identifying) Kondrak (2001)

Coreference resolution Ponzetto and Strube (2006)

Document clustering Wang and Hodges (2006)

Information extraction Hassan et al. (2006); Stevenson andGreenwood (2005)

Information retrieval Varelas et al. (2005)

Multiword expressions Baldwin et al. (2003); Cook et al. (2007)

(identifying)

Paraphrasing and Schilder and Thomson McInnnes (2006);

textual entailment Ferrández et al. (2006); Zanzotto and Moschitti (2006)

Question answering Lamjiri et al. (2007)

Real-word spelling error Hirst and Budanitsky (2005); Mohammad and Hirst (2006b)

detection

Relation extraction Chen et al. (2005)

Semantic similarity of texts Corley and Mihalcea (2005)

Speech recognition Inkpen and Desilets (2005)

Subjectivity (determining) Wiebe and Mihalcea (2006)

Summarization Gurevych and Strube (2004); Zhu and Penn (2005);

Li et al. (2006)

Textual inference Haghighi et al. (2005); Raina et al. (2005)

Word prediction Pucher (2006)

Word sense disambiguation Banerjee and Pedersen (2003); McCarthy (2006);

Mohammad et al. (2007b); Patwardhan et al. (2007)

Word-sense discovery Ferret (2004)

Word-sense dominance McCarthy et al. (2004b); Mohammad andHirst (2006a)

(determining)

Word translation* Mohammad et al. (2007b)

* Word translation refers to determining the translation ofa word using its context.
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1.1.4 Can machines estimate semantic distance?

Two classes of methods have been used in automatically determining semantic distance.Knowledge-

rich measures of concept-distance, such as those of Jiang and Conrath (1997), Leacock

and Chodorow (1998), and Resnik (1995), rely on the structure of a knowledge source, such

as WordNet, to determine the distance between two concepts de�ned in it.1 Distributional

measures of word-distance (knowledge-lean measures), such as cosine anda-skew diver-

gence (Lee, 2001), rely on thedistributional hypothesis which states that two words tend

to be semantically close if they occur in similar contexts (Firth, 1957). These measures rely

simply on text and can give the distance between any two wordsthat occur at least a few times.

The various WordNet-based measures have been widely studied (Budanitsky and Hirst,

2006; Patwardhan et al., 2003). Even though individual distributional measures are being used

more and more, the study of distributional measures on the whole, especially when work on

this thesis commenced, received much less attention.2 In Chapter 2, I summarize various

knowledge-rich approaches to semantic distance and present a detailed analysis of the distri-

butional measures.

1.2 Why the need for a better approach

Distributional word-distance and WordNet-based concept-distance measures each have certain

uniquely attractive features: WordNet-based measures cancapitalize on the manual encoding

of lexical semantic relations, while distributional approaches are widely applicable because

they need only raw raw text (and maybe some shallow syntacticprocessing). Unfortunately,

these advantages come at a cost. I now �esh out the limitations of both kinds of measures.

1The nodes in WordNet (synsets) represent concepts and edgesbetween nodes represent semantic relations
such as hyponymy and meronymy.

2See Curran (2004) and Weeds et al. (2004) for other work that compares various distributional measures.
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1.2.1 Limitations common to both WordNet-based concept-distance and

corpus-based word-distance measures

1.2.1.1 Computational complexity and storage requirements

As applications for linguistic distance become more sophisticated and demanding, it becomes

attractive to pre-compute and store the distance values between all possible pairs of words or

senses. However both WordNet-based and distributional measures have large space require-

ments to do this, requiring matrices of sizeN � N, whereN is very large. In case of distri-

butional measures,N is the size of the vocabulary (at least 100,000 for most languages). In

case of WordNet-based measures,N is the number of senses (81,000 just for nouns). Given

that the above matrices tend to be sparse3 and that computational capabilities are continuing to

improve, the above limitation may not seem hugely problematic, but as we see more and more

natural language applications in embedded systems and hand-held devices, such as cell phones,

iPods, and medical equipment, memory and computational power become serious constraints.

1.2.1.2 Reluctance to cross the language barrier

Both WordNet-based and distributional distance measures have largely been used in a mono-

lingual framework. Even though semantic distance seems to hold promise in tasks, such as

machine translation and multi-lingual text summarization, that inherently involve two or more

languages, automatic measures of semantic distance have rarely been applied to these tasks.

With the development of the EuroWordNet, involving interconnected networks of seven differ-

ent languages, it is possible that we shall see more cross-lingual work using WordNet-based

measures in the future. However, such an interconnected network will be very hard to create

for more different language pairs such as English and Chinese or English and Arabic.

3Even though, WordNet-based and distributional measures give non-zero similarity and relatedness values to
a large number of term pairs (concept pairs and word pairs), values below a suitable threshold can be reset to 0.
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1.2.2 Further limitations of WordNet-based concept-distance measures

1.2.2.1 Lack of high-quality WordNet-like knowledge sources

Ontologies, WordNets, and semantic networks are availablefor a few languages such as En-

glish, German, and Hindi. Creating them requires human experts and it is time intensive. Thus,

for most languages, we cannot use WordNet-based measures simply due to the lack of a Word-

Net in that language. Further, even if created, updating an ontology is again expensive and

there is usually a lag between the current state of language usage/comprehension and the se-

mantic network representing it. Further, the complexity ofhuman languages makes creation

of even a near-perfect semantic network of its concepts impossible. Thus in many ways the

ontology-based measures are only as good as the networks on which they are based.

On the other hand, distributional measures require only text. Large corpora, billions of

words in size, may now be collected by a simple web crawler. Large corpora of more-formal

writing are also available (for example, theWall Street Journalor theAmerican Printing House

for the Blind (APHB)corpus). This makes distributional measures very attractive.

1.2.2.2 Poor estimation of semantic relatedness

As Morris and Hirst (2004) pointed out, a large number of concept pairs, such asSTRAWBERRY–

CREAM andDOCTOR–SCALPEL, have a non-classical relation between them (STRAWBERRIES

are usually eaten withCREAM and aDOCTOR uses aSCALPEL to make an incision). These

words are not semantically similar, but rather semantically related. An ontology- or WordNet-

based measure will correctly identify the amount of semantic relatedness only if such relations

are explicitly coded into the knowledge source. Further, the most accurate WordNet-based

measures rely only on its extensive is-a hierarchy. This is because networks of other lexical-

relations such as meronymy are much less developed. Further, the networks for different parts

of speech are not well connected. All this means that, while WordNet-based measures ac-

curately estimate semantic similarity between nouns, their estimation of semantic relatedness
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especially in pairs other than noun–noun is at best poor and at worse non-existent. On the other

hand, distributional measures can be used to determine bothsemantic relatedness and semantic

similarity (see Section 2.3.1 for more details).

1.2.2.3 Inability to cater to speci�c domains

Given a concept pair, measures that rely only on WordNet and no text, such as Rada et al.

(1989), give just one distance value. However, two conceptsmay be very close in a certain

domain but not so much in another. For example,SPACEandTIME are close in the domain of

quantum mechanics but not so much in most others. Ontologieshave been made for speci�c

domains, which may be used to determine semantic similarityspeci�c to these domains. How-

ever, the number of such ontologies is very limited. Some of the more successful WordNet-

based measures, such as Jiang and Conrath (1997), that rely on text as well, do indeed capture

domain-speci�city to some extent, but the distance values are still largely shaped by the un-

derlying network, which is not domain-speci�c. On the otherhand, distributional measures

rely primarily (if not completely) on text and large amountsof corpora speci�c to particular

domains can easily be collected.

1.2.3 Further limitations of corpus-based word-distance measures

1.2.3.1 Con�ation of word senses

The distributional hypothesis Firth (1957) states that words that occur in similar contexts tend

to be semantically close. But when words have more than one sense, it is not at all clear what

semantic distance between them actually means. Further, a word in each of its senses is likely

to co-occur with different sets of words. For example,bankin the FINANCIAL INSTITUTION

sense is likely to co-occur withinterest, money, accounts,and so on, whereas theRIVER BANK

sense might have words such asriver, erosion,and silt around it. Since words that occur

together in text tend to refer to senses that are closest in meaning to one another, in most natural
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language applications, what is needed is the distance between the closest senses of the two

target words. However, because distributional measures calculate distance from occurrences

of the target word in all its occurrences and hence all its senses, they fail to get the desired

result. Also note that the dimensionality reduction inherent to latent semantic analysis (LSA),

a special kind of distributional measure, has the effect of making the predominant senses of

the words more dominant while de-emphasizing the other senses. Therefore, an LSA-based

approach will also con�ate information from the different senses, and even more emphasis will

be placed on the predominant senses. Given the semanticallyclose target nounsplayandactor,

for example, a distributional measure will give a score thatis some sort of a dominance-based

average of the distances between their senses. The nounplay has the predominant sense of

CHILDREN' S RECREATION(and notDRAMA ), so a distributional measure will tend to give the

target pair a large (and thus erroneous) distance score. WordNet-based measures do not suffer

from this problem as they give distance between concepts, not words.

1.2.3.2 Lack of explicitly-encoded world knowledge and data sparseness

It is becoming increasingly clear that more-accurate results can be achieved in a large number

of natural language tasks, including the estimation of semantic distance, by combining corpus

statistics with a knowledge source, such as a dictionary, published thesaurus, or WordNet. This

is because such knowledge sources capture semantic information about concepts and, to some

extent, world knowledge. For example, WordNet, as discussed earlier, has an extensive is-a

hierarchy. If it lists one concept, say GERMAN SHEPHERDas a hyponym of another, sayDOG,

then we can be sure that the two are semantically close. On theother hand, distributional

measures do not have access to such explicitly encoded information. Further, unless the corpus

used by a distributional measure has suf�cient instances ofGERMAN SHEPHERD andDOG, it

will be unable to deem them semantically close. Since Zipf'slaw seems to hold even for the

largest of corpora, there will always be words that occur toofew times to accurately determine

their distributional distance from others.
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1.3 A new approach:

Distributional measures of concept-distance

In this thesis, I propose a new hybrid approach that combinesa knowledge source with text

to measure semantic distance. The new measures have the bestfeatures of both semantic and

distributional measures and some additional advantages aswell. They address, with varying

degrees of success, the limitations of earlier approaches.

1.3.1 The argument:

Distributional pro�les of concepts for measuring semanticdistance

The central argument of this thesis is that semantic distance is essentially a property of con-

cepts (rather than of words) and that two concepts are semantically close if they occur in similar

contexts. This is similar to the distributional hypothesisexcept that the target is a word sense

or concept (rather than a word). The set of contexts of a concept can be represented by what

I will call the distributional pro�le of the concept (DP of the conceptor simplyDPC). The

distributional pro�le of a concept is the set of words that co-occur with it in text, along with

their strength of the co-occurrence association—a numericvalue indicating how much more

than random chance a word tends to co-occur with a concept (more details in Chapter 3). Thus,

the semantic distance between two concepts can be determined by calculating the distance

between the respectiveDPCs. The argument proposed here reduces to the distributional hy-

pothesis when we consider words with just one sense or meaning. However, the words people

use most tend to be highly ambiguous.

It is a perverse feature of human languages that the words used most frequently

tend to be the most polysemantic.

— George A. Miller (“Ambiguous Words”,Impacts Magazine, May 2001)
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While the distributional hypothesis clumps all occurrences of a word into one bag (Figure 1.4),

I propose pro�ling the different senses separately (Figure1.5). The motivation is that a word

when used in different senses tends to keep different company, that is, it co-occurs with a

different sets of words. By pro�ling the contexts of different senses separately, we will be able

to infer the semantic properties of the different senses andindeed estimate semantic distance

more accurately.

The creation of DPCs requires: (1) a concept inventory that lists all the concepts and words

that refer to them, and (2) counts of how often a concept co-occurs with a word in text. We

use the categories in theMacquarie Thesaurus, 812 in all, as very coarse-grained word senses

or concepts (Figure 1.6). This is a departure from the norm inthe computational linguistics

community where the use of WordNet or another similarly �ne-grained sense inventory is more

common. However, this very aspect of �ne-grainedness has been widely criticized for some

time now (Agirre and Lopez de Lacalle Lekuona (2003) and citations therein), and is one of

the reasons this work uses a published thesaurus; Section 1.3.2 presents further motivation.

Since words may be used in more than one sense and can refer to different concepts in

different contexts, a direct approach to determining the concept–word co-occurrence counts

requires sense-annotated text. However, manual annotation is tedious, expensive, and not easily

scalable. This brings us to the following questions: (1) Canwe determine accurate estimates

of concept–word co-occurrence counts, and thereby determine DPCs, without the use of sense-

annotated data? and (2) Can these estimates of DPCs be used toinfer semantic properties of

concepts, and indeed accurately measure semantic distance? This thesis claims that the answers

to both of these questions are af�rmative—an even stronger claim than the one made earlier in

this section. In Chapter 3, I propose a bootstrapping and concept-disambiguation algorithm to

create (estimates of) distributional pro�les of concepts without the use of any human-annotated

data. In Chapter 4, I show how DPCs can be created in a cross-lingual framework. Chapters

3 through 7 describe experiments in various natural language tasks that were attempted using
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star
light

rich
judge

flute

revolvefashion
planet

fusion entourage
famous

emu

DP ofstar

Figure 1.4: Example distributional pro�le (DP) of the wordstar. A solid arrow indicates strong

co-occurrence association whereas a dotted arrow indicates a weak co-occurrence association.

light

planet

revolve
heat fusion

famous

emu

rich

CELESTIAL BODY

(a) DP ofCELESTIAL BODY

planet

emu

light

CELEBRITY

famous

rich
movie entourage

fashion

(b) DP ofCELEBRITY

Figure 1.5: Example distributional pro�les of two senses ofstar.
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honesty
incorruptness
integrity
plain dealing
probity
scrupulosity
sincerity
...
...
...

369. HONESTY

furniture
chair
stool
bench
couch
cot
table
...
...
...

302. FURNITURE

Figure 1.6: TheMacquarie Thesaurusand fragments of its content.

these DPCs (Section 1.3.3 gives a brief outline) and whose results validate the claims made

above.

1.3.2 A suitable knowledge source and concept inventory

Knowledge sources, such as dictionaries, thesauri, and wordnets, capture semantic informa-

tion about concepts and, to some extent, world knowledge. The approach proposed here does

not require a complex array of concepts interconnected by semantic relations as in WordNet.

Nor does it require glosses that tend to be somewhat subjective and rigid. Instead, it requires

only that the knowledge source provide a list of all the concepts in a language (or a subset of

the language) and a set of words and/or multiword expressions representing each concept. I

use the categories in theMacquarie Thesaurusas senses. Most published thesauri divide the

vocabulary into about 1000 categories, which can be considered as the basic concepts repre-

sented by the language. The words listed under each categorygloss the meaning of the concept.

The concepts (categories) roughly correspond to very coarse-grained word senses (Yarowsky,

1992).

Published thesauri are available in a number of languages, although, admittedly many lan-

guages may not have comprehensive and high-quality ones. Resources that are not thesauri,

per se, may also be used in place of a published thesaurus. (See Lapata and Keller (2007)
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for a simpli�ed version of our word sense dominance system (Mohammad and Hirst, 2006a)

that uses WordNet instead of a thesaurus.) More importantly, as I will describe in the next

subsection, my approach can determine semantic distance inone, possibly resource-poor, lan-

guage using a thesaurus from another, possibly resource-rich language, thereby eliminating the

knowledge-source bottleneck.

As applications for linguistic distance become more sophisticated and demanding, it be-

comes attractive to pre-compute and store the distance values between all possible pairs of

words or senses. But both corpus-based word-distance and WordNet-based sense-distance

measures have large space requirements, needing matrices of sizeN � N, whereN is the size

of the vocabulary (perhaps 100,000 for most languages) in the case of distributional measures

and the number of senses (75,000 just for nouns in WordNet) inthe case of semantic measures.

The use of categories in a thesaurus as concepts means that this approach requires a concept–

concept distance matrix of size only about 1000� 1000—much smaller than (about 0.01% the

size of) the matrix required by traditional semantic and distributional measures. This makes

the approach scalable to large amounts of text. Working in a relatively smaller number of di-

mensions (1000 concepts), as suggested above, means that onthe one hand there will be a loss

of information (in this case, a loss of distinction between near-synonyms) and yet on the other

hand there is more information to accurately determine semantic distance between the coarse

concepts. As I will show, through various experiments throughout this thesis, in a number of

natural language applications, using semantic distance between these very coarse senses is just

as useful if not more so. Further, I believe, this distance approach provides a powerful starting

point to build on top of it a system that differentiates near-synonyms.

In this thesis, I go further and use the idea of a very coarse sense inventory to develop a

framework for distributional measures of concept-distance that can more naturally and more

accurately be used in place of semantic measures of word senses than distributional measures

of word-distance.
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1.3.3 Applications in measuring semantic distance

In Chapters 3 and 4, I will show how, using the DPCs, traditional distributional measures, such

as cosine anda-skew divergence, can be used to measure the distance between concepts (rather

than words). I will show that when applied even to domain-general noun concepts4 in the tasks

of ranking word pairs in order of their semantic distance, correcting real-word spelling

errors, andsolvingReader's Digestword choice problems, the newly proposed distributional

concept-distance measures outperform traditional word-distance measures and are as accurate

as, if not better than, the semantic measures.

Modeling co-occurrence distributions of concepts and words allows this approach (unlike

the traditional semantic and distributional measures) to attempt in an unsupervised manner

tasks that traditionally require sense-annotated data. InChapter 5, I will show how distribu-

tional pro�les of concepts can be used todetermine word sense dominance—the proportion

of the occurrences of a target word used in a particular sense—by both explicit and implicit

word sense disambiguation.Word sense disambiguation, as mentioned earlier, is the identi�-

cation of the sense closest to the context of a particular occurrence of the target word. Chapter

6 describes how the DPCs can be used to create anunsupervisedna�̈ve Bayes word sense clas-

si�er. This system participated in SemEval-07's English Lexical Sample Space coarse-grained

word sense disambiguation task and was only about one percentage point below the best unsu-

pervised system.5

Knowledge-rich measures of concept-distance and distributional measures of word-distance

are largely monolingual, that is, they are used to quantify distance between concepts or words

in the same language. Further, the use of semantic measures to estimate distance in one lan-

guage requires a knowledge source in that (same) language. Unfortunately, most languages

do not have knowledge sources such as WordNet. Even though many languages, as pointed

4As mentioned earlier, the performance of semantic measuresis signi�cantly worse for concept pairs other
than noun–noun.

5SemEval-07 is a workshop of ACL-07, where systems compete invarious semantic analysis tasks on newly
compiled/created test data.
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out in the previous section, have a published thesaurus, still many more do not. In Chapter 4,

I will show how text in one language can be combined with a knowledge source in another,

using a bilingual lexicon and the bootstrapping/concept-disambiguation algorithm, to create

cross-lingual distributional pro�les of concepts.

These cross-lingual DPCs model co-occurrence distributions of concepts, as per a knowl-

edge source in one language, with words from another language. They can be used to obtain

state-of-the-art accuracies inestimating semantic distance in a resource-poor language us-

ing a knowledge source from a resource-rich one. In Chapter 4, I will show how German–

English DPCs can be created by combining a German corpus withan English thesaurus using

a German–English bilingual lexicon. A comparison of this approach with strictly monolingual

approaches that use GermaNet reveals that the cross-lingual approach performs just as well,

if not better, thereby proving the worth of the approach to languages that lack a GermaNet,

WordNet, or other such knowledge source.

Cross-lingual semantic distance and cross-lingual DPCs are also useful in tasks that in-

herently involve two or more languages. In Chapter 7, I will show how they can helpma-

chine translation—choosing a translation hypothesis in the target language that is semanti-

cally closest, if not identical, to the source language text. The implementation of a DPC-based

unsupervised na�̈ve Bayes classi�er placed �rst among all unsupervised systems taking part

in SemEval-07's Multilingual Chinese–English Lexical Sample Task, where suitable English

translations of given target Chinese words in context were to be identi�ed.

Together these results provide unequivocal and substantial evidence for the claim that esti-

mates of distributional pro�les of concepts, created without the use of any manually-annotated

data, can be used to infer semantic properties of a concept, and indeed accurately measure

semantic distance.



Chapter 2

State-of-the-art in estimating semantic

distance

2.1 Knowledge sources

Automatic measures of semantic distance rely on one or more knowledge sources, such as

text, dictionaries, thesauri, and WordNet. Those that relysimply on text and give distance

betweenwords, such as the distributional measures, are referred to asknowledge-leanwhereas

others, such as the WordNet-based measures that give distance betweenconceptsare called

knowledge-rich. Measures of concept-distance require both a concept inventory that lists all

the concepts in a language and a lexicon that lists all the words that refer to them. WordNet

acts as both the concept inventory and the lexicon for the WordNet-based measures, while the

Macquarie Thesaurusplays those roles in the approach I propose.

2.1.1 Text

Words that occur within a certain window of a target word are called theco-occurrencesof

the word. The window size may be a few words on either side, thecomplete sentence, the

paragraph or the entire document. Consider the sentence below:

21
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Nobody can cast aspelllike Hermione

If we consider the window size to be the complete sentence, thenspellco-occurs withnobody,

can, cast, a, like,andHermione. The co-occurring words are also said to constitute thecontext

of the target word.

The target word may have more than one meaning, but when used in a sentence it almost

always refers to just one of these senses or concepts. Thus, the words that co-occur with the

target word can also be said to co-occur with its intended sense. Althoughspell can meanA

PERIOD OF TIME, in the example above it is used in theINCANTATION OR CHARM sense. We

can therefore also say thatnobody, can, cast, a, like,andHermioneco-occur with the concept

of INCANTATION OR CHARM. Co-occurring words have long been used to determine semantic

properties of the target word. In this thesis, the words thatco-occur with a concept will be used

to determine its semantic distance from other concepts.

Measures of Association

Some words co-occur with the target (word or concept) just bychance, whereas others tend

to co-occur more often than chance. For example,nobodyis expected to co-occur withspell

(or INCANTATION OR CHARM) more or less by chance; however,castis expected to co-occur

with the same target much more often than chance. The stronger the association between the

target and a co-occurring word, the more informative the co-occurring word is. The hypothesis

is that the more two concepts are semantically related, the more they will be talked about

together. Therefore, if inferences are to be made about the target from its co-occurring words,

then more weight is given to information provided by stronger co-occurrences. The weight

is proportional to thestrength of association, which quanti�es how strong the co-occurrence

is. It can be calculated by applying a suitable statistic, such as pointwise mutual information
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(PMI), to acontingency tableof the targett (word or concept) and the co-occurring wordw.

t : t

w nwt nw:

: w n: t n::

A contingency table shows the number of times two events occur together (nwt), the number of

times one occurs while the other does not (n: t andnw: ), and the number of times neither occurs

(n:: ). Strength of association values are calculated from observed frequencies (nwt;n: t;nw: ;

andn:: ), marginal frequencies (nw� = nwt + nw: ; n:� = n: t + n:: ; n� t = nwt + n: t ; andn�: =

nw: + n:: ), and the sample size (N = nwt + n: t + nw: + n:: ). It should be noted here that

when counting co-occurrence frequencies to populate the contingency table, one may choose

whether or not to incorporate the order of the co-occurring terms. For example,nwt may be

chosen to be the number of timesw co-occurs witht: (1) such thatw is followed byt; or

(2) irrespective of whetherw follows t or the other way round. Both ways of determining the

contingency table are defendable. For all the experiments conducted as part of this thesis, the

order of co-occurrence is ignored.

Pointwise mutual information (PMI), is one of the most widely used measures of associa-

tion. Its formula is given below:

pmi(w;t) = log
nwt � N

nw� � n� t

PMI gives a score of 0 if the occurrence of one event is statistically independent of the other.

Scores can reach positive in�nity if the events are dependent and negative in�nity if they are

inversely dependent. Strictly speaking, the above formuladoes not truly represent PMI because

while PMI calculations expectnwt to be less than or equal tonw, the way term co-occurrence in

text is usually countednwt may be greater thannw; for example, in a particular sentence, if there

are two occurrences oft close tow, thennwt is incremented by 2 whereasnw is incremented by

just 1. Church and Hanks (1990) pioneered the use of such a PMI-based measure of association

and they called itword association ratio to differentiate it from PMI. Also, co-occurrence
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counts for word association ratio respect the order of termsin text. Since the experiments in

this thesis ignore order of co-occurrence and because the difference from PMI is only minor,

rather than coining a new term and in accordance with the computational linguistics jargon, I

will refer to the PMI-based measure of association simply asPMI.

The odds ratio (Tan et al., 2002) varies between 0 (inverselydependent) and positive in�nity

(dependent);

odds(w;t) =
nwt � n::

nw: � n: t

where a score of 1 indicates statistical independence. Yule's coef�cient (Tan et al., 2002)

transforms the odds ratio to a� 1 to 1 scale with 0 representing independence.

Yule(w;t) =

p
odds(w;t) � 1

p
odds(w;t)+ 1

The cosine (van Rijsbergen, 1979) and Dice coef�cient vary between 0 and 1, while thef

coef�cient (Tan et al., 2002) gives values between 0 and in�nity.

cos(w;t) =
nwtp

nw� �
p

n� t

Dice(w;t) =
2� nwt

nw� + n� t

f (w;t) =
(nwt � n:: ) � (nw: � n: t)p

nw� � n:� � n� t � n�:

There is no particular value signifying independence for these three measures. The higher the

values, the stronger the association between the word and category.

2.1.2 WordNet

WordNet is described by its creators as a “large, electronically available, lexical database of

English” (Fellbaum, 1998). It is a semantic network in whicheach node, called a synset,

represents a �ne-grained concept or word sense. Each synsetis composed of a gloss and a set

of near-synonymous words which refer to that concept. The synsets are connected by lexical

relations such as hyponymy, meronymy, and so on.
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WordNet 3.0, the current version as of this thesis, has more than 117,000 synsets and covers

more than 155,000 word-types. It has more than 81,000 noun, 13,000 verb, 18,000 adjective,

and 3,000 adverb synsets. It has a coverage of more than 117,000 noun, 11,000 verb, 22,000

adjective, and 4,000 adverb word-types.

Since its creation, WordNet has been used by the computational linguistics research com-

munity for a wide range of tasks from machine translation to text categorization to identifying

cognates. Its remarkable success has propelled creation ofwordnets for numerous other lan-

guages too. For example, GermaNet is a wordnet that connectsGerman nouns, verbs, and

adjectives. It has more than 60,000 synsets.

However, the �ne-grainedness of WordNet remains one of its key drawbacks. WordNet-

based measures of semantic distance require matrices of size N � N, whereN is the number

of senses—81,000 just for nouns. The approach proposed in this thesis relies on a published

thesaurus, but for the sake of comparison I also conducted experiments using state-of-the art

approaches that rely on WordNet and GermaNet.

2.1.3 Thesauri

Published thesauri, such asRoget'sandMacquarie, divide the English vocabulary into around

a thousandcategoriesof near-synonymous and semantically related words. Words with more

than one meaning are listed in more than one category. For every word-type in the vocabu-

lary of the thesaurus, the index speci�es the categories that list it. Categories roughly corre-

spond to very coarse word senses or concepts (Yarowsky, 1992), and the terms will be used

interchangeably. For example, in theMacquarie Thesaurus, bark is listed in the categories

ANIMAL NOISES andMEMBRANE. These categories represent the coarse senses ofbark. A

published thesaurus thus provides us with a very coarse human-developed set or inventory of

word senses or concepts that are more intuitive and discernible than the “concepts” generated

by dimensionality-reduction methods such as latent semantic analysis. Using coarse senses

from a known inventory means that the senses can be represented unambiguously by a large
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number of possibly ambiguous words (conveniently available in the thesaurus)—a feature I

will exploit to determine useful estimates of the strength of association between a concept and

co-occurring words.

We use theMacquarie Thesaurus(Bernard, 1986) categories as very coarse word senses.

It has 812 categories with around 176,000 word-tokens and 98,000 word-types. This allows

us to have a much smallerconcept–concept distance matrixof size just 812� 812 (roughly

.01% the size of matrices required by existing measures).

Note that in published thesauri, such asRoget'sandMacquarie, categories are further di-

vided into paragraphs and paragraphs into semicolon groups. Words within a semicolon group

tend to be semantically closer to each other than those in different semicolon groups of the

same paragraph. Likewise, words within a paragraph tend to be semantically closer than those

in different paragraphs. The experiments described in thisthesis do not take advantage of this

information, except those detailed in Chapter 4. are structurally quite different from the so

called “distributional thesaurus” automatically generated by Lin (1998b), wherein a word has

exactly one entry, and its neighbors may be semantically related to it in any of its senses. All

future mentions ofthesaurusin this thesis will refer to a published thesaurus.

2.2 Knowledge-rich approaches to semantic distance

Creation of electronically available ontologies and semantic networks like WordNet has al-

lowed their use to help solve numerous natural language problems including the measurement

of semantic distance. Budanitsky and Hirst (2006), Hirst and Budanitsky (2005), and Patward-

han et al. (2003) have done an extensive survey of the variousWordNet-based measures, their

comparisons with human judgment on selected word pairs, andtheir usefulness in applica-

tions such as real-word spelling correction and word sense disambiguation. Hence, this section

provides only a brief summary of the major knowledge-rich measures of semantic distance.
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2.2.1 Measures that exploit WordNet's semantic network

A number of WordNet-based measures consider two concepts tobe close if they are close to

each other in WordNet. One of the earliest and simplest measures is the Rada et al. (1989)

edge-countingmethod. The shortest path in the network between the two target concepts

(target path) is determined. The more edges there are between two words, the more distant

they are. Elegant as it may be, the measure hinges on the largely incorrect assumption that all

the network edges correspond to identical semantic distance.

Nodes in a network may be connected by different kinds of lexical relations such as hy-

ponymy, meronymy, and so on. Edge counts apart, the Hirst andSt-Onge (1998) measure

takes into account the fact that if the target path consists of edges that belong to many different

relations, then the target concepts are likely more distant. The idea is that if we start from a

particular nodec1 and take a path via a particular relation (say, hyponymy), toa certain extent

the concepts reached will be semantically related toc1. However, if during the way we take

edges belonging to different relations (other than hyponymy), very soon we may reach words

that are unrelated. Hirst and St-Onge's measure of semanticrelatedness is listed below:

HS(c1;c2) = C� path length� k� d (2.1)

wherec1 andc2 are the target concepts,d is the number of times an edge pertaining to a relation

different from that of the preceding edge is taken, andC and k are empirically determined

constants. More recently, Yang and Powers (2005) propose a weighted edge-counting method

to determine semantic relatedness using the hypernymy/hyponymy, holonymy/meronymy, and

antonymy links in WordNet.

Leacock and Chodorow (1998) used just one relation (hyponymy) and modi�ed the path

length formula to re�ect the fact that edges lower down in theis-a hierarchy correspond to

smaller semantic distance than the ones higher up. For example, synsets pertaining tosports

car andcar (low in the hierarchy) are much more similar than those pertaining totransportand

instrumentation(higher up in the hierarchy) even though both pairs of nodes are separated by
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exactly one edge in WordNet'sis-a hierarchy.

LC(c1;c2) = � log
len(c1;c2)

2D
(2.2)

whereD is the depth in the taxonomy.

Resnik (1995) suggested a measure that combines corpus statistics with WordNet. He pro-

posed that since thelowest common subsumeror lowest super-ordinate (lso)of the target

nodes represents what is similar between them, the semanticsimilarity between the two con-

cepts is directly proportional to how speci�c the lso is. Themore general the lso is, the larger

the semantic distance between the target nodes. This speci�city is measured by the formula for

information content (IC):

Res(c1;c2) = IC(lso(c1;c2)) = � logp(lso(c1;c2)) (2.3)

Observe that using information content has the effect of inherently scaling the semantic sim-

ilarity measure by depth of the taxonomy. Usually, the lowerthe lowest super-ordinate, the

lower the probability of occurrence of the lso and the concepts subsumed by it, and hence, the

higher its information content.

As per Resnik's formula, given a particular lowest super-ordinate, the exact positions of

the target nodes below it in the hierarchy do not have any effect on the semantic similarity.

Intuitively, we would expect that word pairs closer to the lso are more semantically similar

than those that are distant. Jiang and Conrath (1997) and Lin(1997) incorporate this notion

into their measures which are arithmetic variations of the same terms. The Jiang and Conrath

(1997) measure (JC) determines how dissimilar each target concept is from the lso (IC(c1) �

IC(lso(c1;c2)) and IC(c2) � IC(lso(c1;c2)) ). The �nal semantic distance between the two

concepts is then taken to be the sum of these differences. Lin(1997) (like Resnik) points out

that the lso is what is common between the two target conceptsand that its information content

is the common information between the two concepts. His formula (Lin) can be thought of as
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taking the Dice coef�cient of the information in the two target concepts.

JC(c1;c2) = 2 logp(lso(c1;c2)) � (log(p(c1)) + ( log(p(c2))) (2.4)

Lin(c1;c2) =
2� logp(lso(c1;c2))

log(p(c1)) + ( log(p(c2))
(2.5)

Budanitsky and Hirst (2006) show that the Jiang-Conrath measure has the highest correla-

tion (0.850) with the Miller and Charles noun pairs and performs better than all other measures

considered in a spelling correction task. Patwardhan et al.(2003) get similar results using the

measure for word sense disambiguation.

All of the approaches described above rely heavily (if not solely) on the hypernymy/hyponymy

network in WordNet; they are designed for, and evaluated on,noun–noun pairs. However, more

recently, Resnik and Diab (2000) and Yang and Powers (2006a)developed measures aimed

at verb–verb pairs. Resnik and Diab (2000) ported several measures which are traditionally

applied on the noun hypernymy/hyponymy network (edge counting, Resnik (1995), and Lin

(1997)) to the relatively shallow verb troponymy network. The two information content-based

measures best ranked a carefully chosen set of 48 verbs in order of their semantic distance.1

Yang and Powers (2006a) ported their earlier work on nouns (Yang and Powers, 2005) to verbs.

In order to compensate for the relatively shallow verb troponymy hierarchy and the lack of a

corresponding holonymy/meronymy hierarchy, they proposed several back-off models—the

most useful one being the distance between a noun pair that has the same lexical form as the

verb pair. However, the approach has too many tuned parameters (9 in all) and performed

poorly on a set of 36 TOEFL word choice questions involving verb targets and alternatives.

2.2.2 Measures that rely on dictionaries and thesauri

Lesk (1986) introduced a method to perform word sense disambiguation using word glosses

(de�nitions). The glosses of the senses of a target word are compared with those of its context

1Only those verbs were selected which require a theme and the sub-categorization frames of verb pairs had to
match.
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and the number of word overlaps is determined. The sense withthe most number of overlaps

is chosen as the intended sense of the target. Inspired by this approach, Banerjee and Pedersen

(2003) proposed a semantic relatedness measure that deems to concepts to be more seman-

tically related if there is more overlap in their glosses. Notably, they overcome the problem

of short glosses by considering the glosses of concepts related to the target concepts through

the WordNet lexical semantic relations such as hyponymy/hypernymy. They also give more

weight to larger overlap sequences. Patwardhan and Pedersen (2006) proposed another gloss-

based semantic relatedness measure which performed slightly worse than the extended gloss

overlap measure in a word sense disambiguation task, but markedly better at ranking the Miller

and Charles (1991) word pairs. Their approach has certain similarities to the one proposed in

this thesis and so will be discussed in more detail in the Section 3.6 (Related work) of the next

chapter.

Jarmasz and Szpakowicz (2003) use the taxonomic structure of the Roget's Thesaurusto

determine semantic similarity. Two words are considered maximally similar if they occur in

the same semicolon group in the thesaurus. Then on, decreasing in similarity are word pairs in

the same paragraph, words pairs in different paragraphs belonging to the same part of speech

and within the same category, word pairs in the category, andso on until word pairs which

have nothing in common except that they are in the thesaurus (maximally distant). They show

that this simple approach performs remarkably well at ranking word pairs and determining the

correct answer in sets of TOEFL, ESL, andReader's Digestword choice problems.

2.3 Knowledge-lean approaches to semantic distance

2.3.1 The distributional hypotheses: the original and the new

Distributional measuresare inspired by the maxim “You shall know a word by the company

it keeps” (Firth, 1957). These measures rely simply on raw text and possibly some shallow

syntactic processing. They are much less resource-hungry than the semantic measures, but
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they measure the distance between words rather than word-senses or concepts. Two words are

considered close if they occur in similar contexts. Statistics acquired from large text corpora

are used to determine how similar the contexts of the two words are. This distance between

sets of contexts can be used as a proxy for semantic distance as words found in similar contexts

tend to be semantically similar—thedistributional hypothesis (Firth, 1957; Harris, 1968).

The hypothesis makes intuitive sense, as Budanitsky and Hirst (2006) point out: If two

words have many co-occurring words in common, then similar things are being said about

both of them and so they are likely to be semantically similar. Conversely, if two words are

semantically similar, then they are likely to be used in a similar fashion in text and thus end

up with many common co-occurrences. For example, the semantically similar bugandinsect

are expected to have a number of common co-occurring words such ascrawl, squash, small,

woods, and so on, in a large enough text corpus.

The distributional hypothesis only mentions semantic similarity and not semantic related-

ness. This coupled with the fact that the difference betweensemantic relatedness and semantic

similarity is somewhat nuanced, and can be missed, meant that almost all work employing

the distributional hypothesis was labeled as estimating semantic similarity. However, it should

be noted that distributional measures can be used to estimate both semantic similarity and se-

mantic relatedness. Even though Schütze and Pedersen (1997) and Landauer et al. (1998), for

example, use the termsimilarity and notrelatedness, their LSA-based distance measures in

fact estimate semantic relatedness and not semantic similarity. I propose more speci�c dis-

tributional hypotheses that make clear how distributionalmeasures can be used to estimate

semantic similarity and how they can be used to measure semantic relatedness:

Hypothesis of the distributionally close and semanticallyrelated:

Two target words are distributionally close and semantically related if they have

many common strongly co-occurring words.

(For example,doctor–surgeonanddoctor–scalpel. See example co-occurring words

in Table 2.1.)
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Table 2.1: Example: Common syntactic relations of target words with co-occurring words.

Co-occurring words

cut (v) hardworking(adj) patient(n)

Semantically similar

target pair

doctor(n) subject–verb noun–quali�er subject–object

surgeon(n) subject–verb noun–quali�er subject–object

Semantically related

target pair

doctor(n) subject–verb noun–quali�er subject–object

scalpel(n) prepositional object–verb – prepositional object–object

Hypothesis of the distributionally close and semanticallysimilar:

Two target words are distributionally close and semantically similar if they have

many common strongly co-occurring words that each have the same syntactic re-

lation with the two targets.

(For example,doctor–surgeon, but notdoctor–scalpel. See syntactic relations with

example co-occurring words in Table 2.1.)

The idea is that both semantically similar and semanticallyrelated word pairs will have

many common co-occurring words. However, words that are semantically similar belong to

the same broad part of speech (noun, verb, etc.), but the sameneed not be true for words that

are semantically related. Therefore, words that are semantically similar will tend to have the

same syntactic relation, such as verb–object or subject–verb, with most common co-occurring

words. Thus, the two words are considered semantically related simply if they have many

common co-occurring words. But to be semantically similar as well, the words must have the

same syntactic relation with co-occurring words. Considerthe word pairdoctor–operate. In a

large enough body of text, the two words are likely to have thefollowing common co-occurring
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words: patient, scalpel, surgery, recuperate, and so on. All these words will contribute to a

high score of relatedness. However, they do not have the samesyntactic relation with the two

targets. (The worddoctor is almost always used as a noun whileoperateis a verb.) Thus,

as per the two newly proposed distributional hypotheses,doctorandoperatewill correctly be

identi�ed as semantically related but not semantically similar. The word pairdoctor–nurse, on

the other hand, will be identi�ed as both semantically related and semantically similar.

In order to clearly differentiate from the distance as calculated by a WordNet-based se-

mantic measure (described earlier in Section 2.2.1), the distance calculated by a corpus-based

distributional measure will be referred to asdistributional distance.

2.3.2 Corpus-based measures of distributional distance

I now describe speci�c distributional measures that rely onthe distributional hypotheses; de-

pending on which speci�c hypothesis they use, they mimic either semantic similarity or se-

mantic relatedness.

2.3.2.1 Spatial Metrics: Cos, L1, L2

Consider a multidimensional space where the number of dimensions is equal to the size of the

vocabulary. A wordw can be represented by a point in this space such that the component of~w

in a dimension (corresponding to wordx, say) is equal to the strength of association (SoA) of

w with x (SoA(w;x)) (Figure 2.1 (a)). Thus, the vectors corresponding to two words areclose

together, and thereby get a low distributional distance score, if they share many co-occurring

words and the co-occurring words have more or less the same strength of association with

the two target words (Figure 2.1 (b)). The distance between two vectors can be calculated in

different ways as described below.

Cosine

The cosinemethod (denoted byCos) is one of the earliest and most widely used distribu-
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Figure 2.1: (a) A representation of wordw in co-occurrence vector space. Valueswx, wy,

andwzare its strengths of association withx, y, andz, respectively. (b) Spatial distributional

distance between target wordsw1 andw2.

tional measures. Given two wordsw1 andw2, the cosine measure calculates the cosine of the

angle between~w1 and~w2. If a large number of words co-occur with bothw1 andw2, then

~w1 and~w2 will have a small angle between them and the cosine will be large; signifying a

large relatedness/similarity between them. The cosine measure gives scores in the range from

0 (unrelated) to 1 (synonymous).

Cos(w1;w2) =
å w2C(w1)[ C(w2) (P(wjw1) � P(wjw2))

q
å w2C(w1) P(wjw1)2 �

q
å w2C(w2) P(wjw2)2

(2.6)

whereC(t) is the set of words that co-occur (within a certain window) with the wordt in a

corpus. In this example, conditional probability of the co-occurring words given the target

words is used as the strength of association.

The cosine was used, among others, by Schütze and Pedersen (1997) and Yoshida et al.

(2003), who suggest methods of automatically generating distributional thesauri from text cor-

pora. Schütze and Pedersen (1997) use the Tipster categoryB corpus (Harman, 1993) (450,000

unique terms) and theWall Street Journalto create a large but sparse co-occurrence matrix of
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3,000 medium-frequency words (frequency rank between 2,000 and 5,000). Latent seman-

tic indexing (singular value decomposition) (Schütze andPedersen, 1997) is used to reduce

the dimensionality of the matrix and get for each term a word vector of its 20 strongest co-

occurrences. The cosine of a target word's vector with each of the other word vectors is cal-

culated and the words that give the highest scores comprise the thesaurus entry for the target

word.

Yoshida et al. (2003) believe that words that are closely related for one person may be dis-

tant for another. They use around 40,000 HTML documents to generate personalized thesauri

for six different people. Documents used to create the thesaurus for a person are retrieved from

the subject's home page and a web crawler which accesses linked documents. The authors

also suggest a root-mean-squared method to determine the similarity of two different thesaurus

entries for the same word.

Manhattan and Euclidean Distances

Distance between two points (words) in vector space can alsobe calculated using the formu-

lae forManhattan distancea.k.a. theL1 norm (denoted byL1) or Euclidean distancea.k.a.

the L2 norm (denoted by L2). In the Manhattan distance (2.7) (Dagan et al. (1997), Dagan

et al. (1999), and Lee (1999)), the difference in strength ofassociation ofw1 andw2 with each

word that they co-occur with is summed. The greater the difference, the greater is the distribu-

tional distance between the two words. Euclidean distance (2.8) (Lee, 1999) employs the root

mean square of the difference in association to get the �nal distributional distance. Both the L1

and L2 norms give scores in the range between 0 (zero distance or synonymous) and in�nity

(maximally distant or unrelated).

L1(w1;w2) = å
w2C(w1)[ C(w2)

j P(wjw1) � P(wjw2) j (2.7)

L2(w1;w2) =
s

å
w2C(w1)[ C(w2)

(P(wjw1) � P(wjw2))2 (2.8)
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The above formulae use conditional probability of the co-occurring words given a target word

as the strength of association.

Lee (1999) compared the ability of all three spatial metricsto determine the probability of

an unseen (not found in training data) word pair. The measures in order of their performance

(from better to worse) were: L1 norm, cosine, and L2 norm. Weeds (2003) determined the cor-

relation of word pair ranking as per a handful of distributional measures with human rankings

(Miller and Charles (1991) word pairs). She used verb-object pairs from theBritish National

Corpus (BNC)and found the correlation of L1 norm with human rankings to be 0.39.

2.3.2.2 Mutual Information–Based Measures:Hindle, Lin

Hindle (1990) was one of the �rst to factor the strength of association of co-occurring words

into a distributional similarity measure.2 Consider the nounsn j andnk that exist as objects

of verb vi in different instances within a text corpus. Hindle used thefollowing formula to

determine the distributional similarity ofn j andnk solely from their occurrences as object of

vi :

Hinobj(vi ;n j ;nk) =

8
>>>>>>>>><

>>>>>>>>>:

min(I (vi;n j ); I (vi;nk)) ;

if I (vi;n j) > 0 andI (vi;nk) > 0

j max(I (vi;n j); I (vi;nk)) j;

if I (vi;n j) < 0 andI (vi;nk) < 0

0; otherwise

(2.9)

I (n;v) stands for the PMI between the nounn and verbv (Note that in case of negative PMI val-

ues, the maximum function captures the PMI, which is lower inabsolute value). The measure

follows from the distributional hypothesis—the more similar the associations of co-occurring

words with the two target words, the more semantically similar they are. Hindle used point-

wise mutual information (PMI)3 as the strength of association. The minimum of the two PMIs

2See Grefenstette (1992) for an approach that does NOT incorporate strength of association of co-occurring
words. He, like Hindle (1990), uses syntactic dependenciesto create distributional pro�les of words. The Jaccard
coef�cient is applied to a pair of such distributional pro�les to determine their similarity.

3In their respective papers, Donald Hindle and Dekang Lin refer to pointwise mutual information as mutual
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captures the similarity in the strength of association ofvi with each of the two nouns.

Hindle used an analogous formula to calculate distributional similarity (Hinsub j) using the

subject-verb relation. The overall distributional similarity between any two nouns is calculated

by the formula:

Hin(n1;n2) =
N

å
i= 0

�
Hinobj(vi ;n1;n2) + Hinsubj(vi;n1;n2)

�
(2.10)

The measure gives similarity scores from 0 (maximally dissimilar) to in�nity (maximally sim-

ilar or synonymous). Note that in Hindle's measure, the set of co-occurring words used is

restricted to include only those words that have the same syntactic relation with both target

words (either verb–object or verb–subject). This is therefore a measure that mimics semantic

similarity and not semantic relatedness. A form of Hindle'smeasure where all co-occurring

words are used, making it a measure that mimics semantic relatedness, is shown below:

Hinrel(w1;w2) = å
w2C(w)

8
>>>>>>>>><

>>>>>>>>>:

min(I (w;w1); I (w;w2)) ;

if I (w;w1) > 0 andI (w;w2) > 0

j max(I (w;w1); I (w;w2)) j;

if I (w;w1) < 0 andI (w;w2) < 0

0; otherwise

(2.11)

whereC(t) is the set of words that co-occur with wordt.

Lin (1998b) suggests a different measure derived from his information-theoretic de�nition

of similarity (Lin, 1998a). Further, he uses a broad set of syntactic relations apart from just

subject–verb and verb–object relations and shows that using multiple relations is bene�cial

even by Hindle's measure. He �rst extracts triples of the form (x; r;y) from the partially parsed

text, where the wordx is related toy by the syntactic relationr. If a particular triple(x0; r0;y0)

occursc times in text, then the pointwise mutual informationI (x0; r0;y0) is the information

contained in the proposition: the triple(x; r;y) occurred a constantc times. Lin de�nes the

information.
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distributional similarity between two words,w1 andw2, as follows:

Lin(w1;w2) =
å (r;w) 2 T(w1) \ T(w2) (I (w1; r;w) + I (w2; r;w))

å (r;w0) 2 T(w1) I (w1; r;w0) + å (r;w00) 2 T(w2) I (w2; r;w00)
(2.12)

whereT(x) is the set of all word pairs(r;y) such that the pointwise mutual informationI (x; r;y),

is positive. Note that this is different from Hindle (1990) where even the cases of negative

PMI were considered. As mentioned earlier, Church and Hanks(1990) show that it is hard

to accurately predict negative word association ratios with con�dence. Thus, co-occurrence

pairs with negative PMI are ignored. The measure gives similarity scores from 0 (maximally

dissimilar) to 1 (maximally similar).

Like Hindle's measure, Lin's is a measure of distributionalsimilarity. However, it distin-

guishes itself from that of Hindle in two respects. First, Lin normalizes the similarity score

between two words (numerator of (2.12)) by their cumulativestrengths of association with the

rest of the co-occurring words (denominator of (2.12)). This is a signi�cant improvement as

now high PMI of the target words with shared co-occurring words alone does not guarantee a

high distributional similarity score. As an additional requirement, the target words must have

low PMI with words they do not both co-occur with. Second, Hindle uses the minimum of

the PMI between each of the target words and the shared co-occurring word, while Lin uses

the sum. Taking the sum has the drawback of not penalizing fora mismatch in strength of

co-occurrence, as long asw1 andw2 both co-occur with a word.

Hindle (1990) used a portion of theAssociated Pressnews stories (6 million words) to

classify the nouns into semantically related classes. Lin (1998b) used his measure to generate

a distributional thesaurus from a 64-million-word corpus of the Wall Street Journal, San Jose

Mercury, andAP Newswire. He also provides a framework for evaluating such automatically

generated thesauri by comparing them with WordNet-based and Roget-based thesauri. He

shows that the distributional thesaurus created with his measure is closer to the WordNet and

Roget-based thesauri than that created using Hindle's measure.
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2.3.2.3 Relative Entropy–Based Measures: KLD, ASD, JSD

Kullback-Leibler divergence

Given two probability mass functionsp(x) andq(x), theirrelative entropy D(pkq) is:

D(pkq) = å
x2X

p(x) log
p(x)
q(x)

for q(x) 6= 0 (2.13)

Intuitively, if p(x) is the accurate probability mass function corresponding toa random variable

X, thenD(pkq) is the information lost when approximatingp(x) by q(x). In other words,

D(pkq) is indicative of how different the two distributions are. Relative entropy is also called

theKullback-Leibler divergence or theKullback-Leibler distance (denoted byKLD ).

Pereira et al. (1993) and Dagan et al. (1994) point out that words have probabilistic dis-

tributions with respect to neighboring syntactically related words. For example, there exists a

certain probabilistic distribution (d1(P(vjn1)) , say) of a particular nounn1 being the object of

any verb. This distribution can be estimated by corpus counts of parsed or chunked text. Letd2

(P(vjn2)) be the corresponding distribution for nounn2. These distributions (d1 andd2) de�ne

the contexts of the two nouns (n1 andn2, respectively). As per the distributional hypothesis,

the more these contexts are similar, the moren1 and n2 are semantically similar. Thus the

Kullback-Leibler distance between the two distributions is indicative of the semantic distance

between the nounsn1 andn2.

KLD(n1;n2) = D(d1kd2)

= å v2Vb P(vjn1) log P(vjn1)
P(vjn2) for P(vjn2) 6= 0

= å v2Vb0(n1)\ Vb0(n2) P(vjn1) log P(vjn1)
P(vjn2) for P(vjn2) 6= 0

(2.14)

whereVb is the set of all verbs andVb0(x) is the set of verbs that havex as the object. Note

again that the set of co-occurring words used is restricted to include only verbs that each have

the same syntactic relation (verb-object) with both targetnouns. This too is therefore a measure

that mimics semantic similarity and not semantic relatedness.

It should be noted that the verb-object relationship is not inherent to the measure and that

one or more of any other syntactic relations may be used. One may also estimate semantic relat-
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edness by using all words co-occurring with the target words. Thus a more generic expression

of the Kullback-Leibler divergence is as follows:

KLD(w1;w2) = D(d1kd2)

= å w2V P(wjw1) log P(wjw1)
P(wjw2) for P(wjw2) 6= 0

= å w2C(w1)[ C(w2) P(wjw1) log P(wjw1)
P(wjw2) for P(wjw2) 6= 0

(2.15)

whereV is the vocabulary (all the words found in a corpus).C(t), as mentioned earlier, is the

set of words occurring (within a certain window) with wordt.

It should be noted that the Kullback-Leibler distance is notsymmetric, that is, the distance

from w1 to w2 is not necessarily, and even not likely, the same as the distance fromw2 to

w1. This asymmetry is counter-intuitive to the general notionof semantic similarity of words,

although Weeds (2003) has argued in favor of asymmetric measures. Further, it is very likely

that there are instances such thatP(w1jv) is greater than 0 for a particular verbv, while due

to data sparseness or grammatical and semantic constraints, the training data has no sentence

wherev has the objectw2. This makesP(w2jv) equal to 0 and the ratio of the two probabilities

in�nite. Kullback-Leibler divergence is not de�ned in suchcases but approximations may be

made by considering smoothed values for the denominator.

Pereira et al. (1993) used KLD to create clusters of nouns from verb-object pairs corre-

sponding to a thousand most frequent nouns in theGrolier's Encyclopedia, June 1991 version

(10 million words). Dagan et al. (1994) used KLD to estimate the probabilities of bigrams that

were not seen in a text corpus. They point out that a signi�cant number of possible bigrams

are not seen in any given text corpus. The probabilities of such bigrams may be determined by

taking a weighted average of the probabilities of bigrams composed of distributionally similar

words. Use of Kullback-Leibler distance as the semantic distance metric yielded a 20% im-

provement in perplexity on theWall Street Journaland dictation corpora provided by ARPA's

HLT program Paul (1991).

It should be noted here that the use of distributionally similar words to estimate unseen

bigram probabilities will likely lead to erroneous resultsin case of less-preferred and strongly-
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preferred collocations (word pairs). Inkpen and Hirst (2002) point out that even though words

like taskand job are semantically very similar, the collocations they form with other words

may have varying degrees of usage. Whiledaunting taskis a strongly-preferred collocation,

daunting jobis rarely used. Thus using the probability of one bigram to estimate that of another

will not be bene�cial in such cases.

a-skew divergence

Thea-skew divergence(ASD) is a slight modi�cation of the Kullback-Leibler divergence

that obviates the need for smoothed probabilities. It has the following formula:

ASD(w1;w2) = å
w2C(w1)[ C(w2)

P(wjw1) log
P(wjw1)

aP(wjw2) + ( 1� a)P(wjw1)
(2.16)

wherea is a parameter that may be varied but is usually set to 0:99. Note that the denomi-

nator within the logarithm is never zero with a non-zero numerator. Also, the measure retains

the asymmetric nature of the Kullback-Leibler divergence.Lee (2001) shows thata-skew di-

vergence performs better than Kullback-Leibler divergence in estimating word co-occurrence

probabilities. Weeds (2003) achieves a correlation of 0:48 and 0:26 with human judgment on

the Miller and Charles word pairs usingASD(w1;w2) andASD(w2;w1), respectively.

Jensen-Shannon divergence

A relative entropy–based measure that overcomes the problem of asymmetry in Kullback-

Leibler divergence is theJensen-Shannon divergencea.k.a.total divergence to the average
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a.k.a.information radius . It is denoted byJSD and has the following formula:

JSD(w1;w2) = D
�

d1k
1
2

(d1 + d2)
�

+ D
�

d2k
1
2

(d1 + d2)
�

(2.17)

= å
w2C(w1)[ C(w2)

 

P(wjw1) log
P(wjw1)

1
2 (P(wjw1) + P(wjw2))

+

P(wjw2) log
P(wjw2)

1
2 (P(wjw1) + P(wjw2))

!

(2.18)

The Jensen-Shannon divergence is the sum of the Kullback-Leibler divergence between each

of the individual co-occurrence distributionsd1 andd2 of the target words with the average

distribution (d1+ d2
2 ). Further, it can be shown that the Jensen-Shannon divergence avoids the

problem of zero denominator. The Jensen-Shannon divergence is therefore always well de�ned

and, likea-skew divergence, obviates the need for smoothed estimates.

The Kullback-Leibler divergence,a-skew divergence, and Jensen-Shannon divergence all

give distributional distance scores from 0 (synonymous) toin�nity (unrelated).

2.3.2.4 Latent Semantic Analysis

Latent semantic analysis (LSA)(Landauer et al., 1998) can be used to determine distribu-

tional distance between words or between sets of words.4 Unlike the various approaches

described earlier where a word–word co-occurrence matrix is created, the �rst step of LSA

involves the creation of a word–paragraph, word–document,or similar such word-passage ma-

trix, where apassageis some grouping of words. A cell for wordw and passagep is populated

with the number of timesw occurs inp or, for even better results, a function of this frequency

that captures how much information the occurrence of the word in a text passage carries.

Next, the dimensionality of this matrix is reduced by applying singular value decom-

position (SVD), a standard matrix decomposition technique. This smaller set of dimensions

represent abstract (unknown) concepts. Then the original word–passage matrix is recreated,

4Landauer et al. (1998) describe it as a measure ofsimilarity, but in fact it is a distributional measure that
mimics semantic relatedness.
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but this time from the reduced dimensions. Landauer et al. (1998) point out that this results in

new matrix cell values that are different from what they werebefore. More speci�cally, words

that are expected to occur more often in a passage than what the original cell values re�ect,

are incremented. Then a standard vector distance measure, such as cosine, that captures the

distance between distributions of the two target words is applied.

LSA was used by Schütze and Pedersen (1997) and Rapp (2003) to measure distributional

distance, with encouraging results. However, there is no non-heuristic way to determine when

the dimension reduction should stop. Further, the generic concepts represented by the reduced

dimensions are not interpretable; that is, one cannot determine which concepts they represent in

a given sense inventory. This means that LSA cannot directlybe used for tasks such as unsuper-

vised sense disambiguation or estimating semantic similarity of known concepts. Finally, it has

two of the biggest problems that plague all distributional word-distance measures—con�ation

of word senses and computational complexity. More about these and other limitations of dis-

tributional and WordNet-based measures is given in Section1.2 ahead.

2.3.3 The anatomy of a distributional measure

Even though there are numerous distributional measures, many of which may seem dramati-

cally different from each other, all distributional measures perform two functions: (1) create

distributional pro�les (DPs) , and (2) calculate the distance between two DPs.

The distributional pro�le of a word is the strength of association between it and each of the

lexical, syntactic, and/or semantic units that co-occur with it. Commonly usedmeasures of

strength of associationare conditional probability (0 to 1) and pointwise mutual information

(� ¥ to ¥ ). Commonly used units of co-occurrence with the target are otherwords, and so we

speak of thelexical distributional pro�le of a word (lexical DPW) . The co-occurring words

may be all those in a predetermined window around the target,or may be restricted to those

that have a certain syntactic (e.g.,verb–object) or semantic (e.g.,agent–theme) relation with

the target word. We will refer to the former kind of DPs asrelation-free. Usually in the latter
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case, separate association values are calculated for each of the different relations between the

target and the co-occurring units. We will refer to such DPs as relation-constrained. Typical

relation-free DPs are those of Schütze and Pedersen (1997)and Yoshida et al. (2003). Typical

relation-constrained DPs are those of Lin (1998a) and Lee (2001). Below are contrived, but

plausible, examples of each for the wordpulse; the numbers are conditional probabilities:

relation-free DP

pulse: beat.28,racing .2,grow.13,beans.09,heart.04, . . .

relation-constrained DP

pulse: < beat, subject–verb> .34,< racing, noun–qualifying adjective> .22,< grow,

subject–verb> .14, . . .

Since the DPs represent the contexts of the two target words,the distance between the DPs

is the distributional distance and, as per the distributional hypothesis, a proxy for semantic

distance. Ameasure of DP distance, such as cosine, calculates the distance between two dis-

tributional pro�les. While any of the measures of DP distance may be used with any of the

measures of strength of association, in practice only certain combinations are used (see Ta-

ble 2.2) and certain other combinations may not be meaningful, for example, Kullback-Leibler

divergence withf coef�cient. Observe from Table 2.2 that all standard-combination distri-

butional measures (or at least those that are described in this chapter) use either conditional

probability or PMI as the measure of association.5

In this thesis, I show how distributional word-distance measures can be used to estimate

concept-distance. All experiments will use standard combinations of measureof DP distance

and measure of association. Therefore, to avoid clutter, instead of referring to a distribu-

tional measure by its measure of DP distance and measure of association (for example,a-skew

divergence—conditional probability), I will refer to it simply by the measure of DP distance

(in this case,a-skew divergence).

5Sense dominance experiments in Chapter 5 use all measures ofstrength of association listed in table 2.2.
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Table 2.2: Measures of DP distance, measures of strength of association, and standard com-

binations. Measures of DP distance that are part of experiments in this thesis as well as the

measures of strength of association that they are traditionally used in combination with, are

marked in bold.

Measures of DP distance Measures of strength of association

a-skew divergence (ASD) f coef�cient (Phi)

cosine (Cos) conditional probability (CP)

Dice coef�cient (Dice) cosine (Cos)

Euclidean distance (L2 norm) Dice coef�cient (Dice)

Hindle's measure (Hin) odds ratio (Odds)

Kullback-Leibler divergence (KLD) pointwise mutual information (PMI)

Manhattan distance (L1 norm) Yule's coef�cient (Yule)

Jensen–Shannon divergence (JSD)

Lin's measure (Lin)

Standard combinations

a-skew divergence—f coef�cient (ASD–CP)

cosine—conditional probability (Cos–CP)

Dice coef�cient—conditional probability (Dice–CP)

Euclidean distance—conditional probability (L2 norm–CP)

Hindle's measure—pointwise mutual information (Hin–PMI)

Kullback-Leibler divergence—conditional probability (KLD–CP)

Manhattan distance—conditional probability (L1 norm–CP)

Jensen–Shannon divergence—conditional probability (JSD–CP)

Lin's measure—pointwise mutual information (Lin–PMI)
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2.4 Other semantic distance work

Apart from the work described so far, which aims at estimating semantic distance between

pairs of concepts and pairs of words, there is a large amount of work that focusses on estimat-

ing semantic distance between larger units of language. Tsang and Stevenson (2004, 2006)

propose ways to determine �ne-grained semantic distance between two texts, each of which

is represented by a set of words weighted by their frequency of occurrence in text. They

map the words to WordNet's is-a hierarchy and use graph-theoretic approaches to �nd the dis-

tance between two concept distributions. In paraphrasing (Barzilay and Lee, 2003; Schilder

and Thomson McInnnes, 2006), machine translation (see Lopez (2007) and Knight and Marcu

(2005) for surveys), text summarization (Gurevych and Strube, 2004; Zhu and Penn, 2005),

and others, the aim is to estimate the distance between two phrases or sentences; in informa-

tion retrieval (Varelas et al., 2005), to estimate the distance between a word (or a few words)

and a document; in text clustering (see Steinbach et al. (2000) for survey), authorship attribu-

tion (Feiguina and Hirst, 2007), and others, to estimate thedistance between two documents;

and in determining selectional preferences (Resnik, 1996), detecting verb argument alterna-

tions (McCarthy, 2000; Tsang and Stevenson, 2004), and others, the goal is to estimate the

distance between two word–frequency pair sets. Some of the above algorithms explicitly use

the semantic distance between a pair of words (or concepts) as the starting point (see Table 1.2

in Chapter 1 for examples), while others implicitly do so by utilizing networks of semantically

related concepts and/or co-occurrence information from text.

There is also work on estimating the strength of speci�c semantic relations between concept

pairs—recall that semantic relatedness is a function of closeness as per each of the semantic

relations between the target pair and that semantic similarity is a function of closeness as per

synonymy, hypernymy/hyponymy, and antonymy. See Mirkin etal. (2007) for work on lexical

entailment, Lucero et al. (2004) for detecting antonyms, and Lin et al. (2003) for detecting

synonyms.

The vastness of literature pertaining to the tasks mentioned in this sub-section precludes
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their discussion in this thesis. However, a lion's share of the future work (see Section 8.5) will

be the use of ideas proposed in this thesis to both determine semantic distance between larger

units of language and to estimate speci�c lexical semantic relations such as antonymy.



Chapter 3

Distributional Measures of

Concept-Distance

3.1 A very coarse concept inventory

In this chapter, I will propose a new distributional concept-distance approach that combines

corpus statistics with a published thesaurus to overcome, with varying degrees of success,

many of the limitations of earlier approaches. The categories in the thesaurus are used as very

coarse senses or concepts; most published thesauri have around a thousand categories. This

allows investigating the impact of choosing a coarse concept inventory—an area not explored

by other approaches, which tend to use the relatively much more �ne-grained WordNet (with

more than 100,000 senses). Further, it means that pre-computing a complete concept–concept

distance matrix now involves the creation of a matrix approximately only 1000� 1000 in size

(much smaller and roughly .01% the size of matrices requiredby existing measures). This

makes the new approach computationally less expensive and the storage requirements easy to

meet.

48
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3.2 The distributional hypothesis for concepts

As discussed earlier in Sections 1.3.1 and 1.2.3.1, the central limitation of using the distribu-

tional hypothesis1 to estimate semantic distance is the con�ation of word senses. While in

most cases, the semantic distance between two concepts (or between the closest senses of two

words) is required, distributional measures of word-distance give some sort of a dominance-

based average of relevant sense-pairs. Further, words whenused in different senses tend to keep

different “company” (co-occurring words). For example, consider the contrived but plausible

distributional pro�le ofstar:

star: space0.21,movie0.16,famous0.15,light 0.12,constellation0.11,heat0.08,

rich 0.07,hydrogen0.07, . . .

Observe that it has words that co-occur both withstar's CELESTIAL BODY sense andstar's

CELEBRITY sense. Thus, it is clear that different senses of a word will probably have very

different distributional pro�les. Using a single DP for theword will mean the union of those

pro�les. While this might be useful for certain applications, this thesis will argue that in a num-

ber of tasks (including estimating semantic distance), acquiring different DPs for the different

senses is not only more intuitive, but also, as I will show through numerous experiments, more

useful. In other words,distributional pro�les of senses or concepts (DPCs)can be used to

infer semantic properties of the senses:

You know aconceptby the company it keeps.

Therefore, I propose pro�ling the co-occurrence distributions of word senses or concepts,

rather than those of words, to determine distributional distance between concepts, rather than

the distance between words. The closer the distributional pro�les of two concepts, the smaller

is their semantic distance. Below are example distributional pro�les of two senses ofSTAR:

CELESTIAL BODY: space0.36,light 0.27,constellation0.11,hydrogen0.07, . . .

1Recall that the distributional hypothesis states, “You know a word by the company it keeps”.
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CELEBRITY: famous0.24,movie0.14,rich 0.14,fan0.10, . . .

The values are the strength of association (usually pointwise mutual information or conditional

probability) of the target concept with co-occurring words. It should be noted that creating

such distributional pro�les of concepts is much more challenging than creating distributional

pro�les of words which involve simple word–word co-occurrence counts. (In the next section,

I show how these pro�les may be estimated without the use of sense-annotated data). How-

ever, once created, any of the many distributional measurescan be used to estimate the distance

between the DPs of two target concepts (just as in the case of traditional word-distance mea-

sures, distributional measures are used to estimate the distance between the DPs of two target

words). For example, here is how cosine is traditionally used to estimate distributional distance

between two words (as described in Section 2.3.2.1 earlier):

Cos(w1;w2) =
å w2C(w1)[ C(w2) (P(wjw1) � P(wjw2))

q
å w2C(w1) P(wjw1)2 �

q
å w2C(w2) P(wjw2)2

(3.1)

C(t) is the set of words that co-occur (within a certain window) with the wordt in a corpus.

The conditional probabilities in the formula are taken fromthe distributional pro�les of words.

We can adapt the formula to estimate distributional distance between two concepts as shown

below:

Coscp(c1;c2) =
å w2C(c1)[ C(c2) (P(wjc1) � P(wjc2))

q
å w2C(c1) P(wjc1)2 �

q
å w2C(c2) P(wjc2)2

(3.2)

C(x) is now the set of words that co-occur withconcept xwithin a pre-determined window. The

conditional probabilities in the formula are taken from thedistributional pro�les of concepts.

With the new approach, if the distance between two words is required, then the distance

between all relevant sense pairs is determined and the minimum is chosen. For example, ifstar

has the two senses mentioned above andfusionhas one (let's call itFUSION), then the distance

between them is determined by �rst applying cosine (or any distributional measure) to the DPs

of CELESTIAL BODY andFUSION:

CELESTIAL BODY: space0.36,light 0.27,constellation0.11,hydrogen0.07, . . .
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FUSION: heat 0.16, hydrogen0.16, energy0.13, bomb0.09, light 0.09, space

0.04, . . .

then applying cosine to the DPs ofCELEBRITY andFUSION:

CELEBRITY: space0.36,light 0.27,constellation0.11,hydrogen0.07, . . .

FUSION: heat 0.16, hydrogen0.16, energy0.13, bomb0.09, light 0.09, space

0.04, . . .

and �nally choosing the one with minimum semantic distance,that is, maximum similar-

ity/relatedness:

distance(star; fusion) = max(Cos(CELEBRITY; FUSION);Cos(CELESTIAL BODY; FUSION))

(3.3)

Note that the maximum value is chosen above because cosine isa similarity/relatedness mea-

sure. In case of distance measures, such asa-skew divergence, the lower of the two values will

be chosen.

3.3 Estimating distributional pro�les of concepts

Determining distributional pro�les ofwordssimply involves making word–word co-occurrence

counts in a corpus. Determining distributional pro�les ofconcepts, on the other hand, requires

information about which words co-occur with which concepts. This means that a direct ap-

proach requires the text, from which counts are made, to be sense annotated. Since existing

labeled data is minimal and manual annotation is far too expensive, indirect means must be

used. I now present a way to estimate distributional pro�lesof concepts from raw text, using a

published thesaurus (the concept inventory) and a bootstrapping algorithm.
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3.3.1 Creating a word–category co-occurrence matrix

A word–category co-occurrence matrix (WCCM) is created having word typesw as one

dimension and thesaurus categoriesc as another.

c1 c2 : : : c j : : :

w1 m11 m12 : : : m1j : : :

w2 m21 m22 : : : m2j : : :
...

...
...

...
...

...

wi mi1 mi2 : : : mi j : : :
...

...
... : : :

...
...

The matrix is populated with co-occurrence counts from a large corpus. A particular cellmi j ,

corresponding to wordwi and category or conceptc j , is populated with the number of times

wi co-occurs (in a window of� 5 words) with any word that hasc j as one of its senses (i.e.,wi

co-occurs with any word listed under conceptc j in the thesaurus). For example, assume that

the concept ofCELESTIAL BODY is represented by four words in the thesaurus:constellation,

planet, starand sun. If the word spaceco-occurs withconstellation(15 times),planet (50

times),star (40 times), andsun (65 times) in the given text corpus, then the cell forspace

andCELESTIAL BODY in the WCCM is populated with 170 (15+ 50+ 40+ 65). This matrix,

created after a �rst pass of the corpus, is called thebase word–category co-occurrence matrix

(base WCCM).

The choice of� 5 words as window size is somewhat arbitrary and hinges on theintuition

that, in text and speech, words close to a target word are moreindicative of its semantic prop-

erties than those more distant. Church and Hanks (1990), in their seminal work on word–word

co-occurrence association, also use a window size of� 5 words and argue that this size is large

enough to capture many verb–argument dependencies and yet small enough so that adjacency

information is not diluted too much. In the word sense dominance experiments (described

ahead in Chapter 5 and through which the WCCM was �rst evaluated), using the whole sen-

tence as context resulted in a lower accuracy than when usingthe� 5 word window. While, it is
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reasonable to determine optimal window sizes for differentapplications from held out datasets,

we decided to use a �xed window size for all our experiments because for most of the tasks

there were only limited amounts of gold standard evaluationdata.

A contingency table for any particular wordw and categoryc can be easily generated from

the WCCM by collapsing cells for all other words and categories into one and summing up

their frequencies.

c : c

w nwc nw:

: w n: c n::

The application of a suitable statistic, such as pointwise mutual information or conditional

probability, will then yield the strength of association between the word and the category.

As the base WCCM is created from unannotated text, it will be noisy. For example, out

of the 40 timesstar co-occurs withspace, 25 times it may have been used in theCELES-

TIAL BODY sense and 15 times in theCELEBRITY sense. However, since this information

was not known to the system, the cell forspace—CELESTIAL BODY in the base WCCM was

incremented by 40 rather than 25. Similarly, the cell forspace—CELEBRITY was also incre-

mented by 40 rather than 15. That said, the base WCCM does capture strong word–category

co-occurrence associations reasonably accurately. This is because the errors in determining the

true category that a word co-occurs with will be distributedthinly across a number of other

categories. For example, even though we increment counts for bothspace–CELESTIAL BODY

andspace–CELEBRITY for a particular instance wherespaceco-occurs withstar, spacewill

co-occur with a number of words such asplanet, sun,andconstellationthat each have the sense

of celestial bodyin common (Figure 3.1), whereas all their other senses are likely different and

distributed across the set of concepts. Therefore, the co-occurrence count, and thereby strength

of association, ofspaceandCELESTIAL BODY will be relatively higher than that ofspaceand

CELEBRITY (Figure 3.2). For more details, see discussion of the general principle in Resnik

(1998).



CHAPTER 3. DISTRIBUTIONAL MEASURES OFCONCEPT-DISTANCE 54

........

w

CELESTIAL BODY

space
a fragment of text

one sense ofw

other sense(s) ofw
w 2 f constellation; planet;star;sung

Figure 3.1: The wordspacewill co-occur with a number of wordsX that each have one sense

of CELESTIAL BODY in common.

CELESTIAL BODY

CELEBRITY

SoA

SoA
a fragment of text

starspace

sense ofstar

sense ofstar

Figure 3.2: The base WCCM captures strong word–category co-occurrence associations.

3.3.2 Bootstrapping

I now describe a bootstrapping procedure which can be used toreduce, even more, the errors

in the WCCM due to word sense ambiguity. Words that occur close to a target word tend to

be good indicators of its intended sense. Therefore, a second pass of the corpus is made and

the base WCCM is used to roughly disambiguate the words in it.Each word in the corpus is

considered as the target one at a time. For each sense of the target, its strength of association

with each of the words in its context (� 5 words) is summed. The sense that has the highest

cumulative association with co-occurring words is chosen as the intended sense of the target

word. In this second pass, a newbootstrapped WCCM is created such that each cellmi j , cor-
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responding to wordwi and conceptc j , is populated with the number of timeswi co-occurs with

any wordused in sense cj . For example, consider again the 40 timesstarco-occurs withspace.

If the contexts of 25 of these instances have higher cumulative strength of association withCE-

LESTIAL BODY thanCELEBRITY, suggesting that in only these 25 of those 40 occurrencesstar

was used inCELESTIAL BODY sense, then the cell forspace–CELESTIAL BODY is incremented

by 25 rather than 40 (as was the case in the base WCCM). This bootstrapped WCCM, created

after simple and fast2 word sense disambiguation, is expected to better capture word–concept

co-occurrence values, and hence strengths of association values, than the base WCCM. The

base and bootstrapped WCCMs were �rst evaluated through word sense dominance experi-

ments (described ahead in Chapter 5); the bootstrapped WCCMgave markedly better results.

Further iterations of the bootstrapping procedure did not,however, improve results. This is not

surprising because the base WCCM was created without any word sense disambiguation and

so the �rst bootstrapping iteration with word sense disambiguation is expected to markedly

improve the matrix. The same is not true for subsequent iterations. Therefore, all other ex-

periments that use a word–concept co-occurrence matrix, including the ones described ahead

in this chapter, use the bootstrapped matrix (created afterone bootstrapping iteration over the

base WCCM).

3.3.3 Mimicking semantic relatedness and semantic similarity

The distributional pro�les created by the above methodology are relation-free. This is because

(1) all co-occurring words (not just those that are related to the target by certain syntactic re-

lations) are used, and (2) the WCCM, as described above in Sections 3.3.1 and 3.3.2, does

not maintain separate counts for the different syntactic relations between the target and co-

occurring words. Thus, distributional measures that use these WCCMs will estimate semantic

relatednessbetween concepts. Distributional measures that mimic semantic similarity, which

2Speed of disambiguation is important here as all words in thecorpus are to be disambiguated. After deter-
mining co-occurrence counts from the BNC (a 100 million wordcorpus), creating the bootstrapped WCCM from
the base WCCM took only about 4 hours on a 1.3GHz machine with 16GB memory.
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apply pmi or conditional probability

create contingency tables

published thesaurustext corpus

distributional profiles of concepts

distributional
measure target concept 2

target concept 1
calculate distributional distance

sense disambiguation
bootstrapping and

word–categoryco-occurrence matrix

countword–categoryco-occurrences

distributional distance between target concepts

Figure 3.3: An overview of the new distributional concept-distance approach.

require relation-constrained DPCs, can easily be created from WCCMs that have rows for each

word–syntactic relation pair (rather than just words). (See earlier Sections 2.3.1 and 2.3.3 for

more discussion of the motivating principles.) However, inthis thesis, all experiments are

conducted using distributional measures that estimate semantic relatedness mainly because of

time constraints, because relatedness subsumes similarity, and because there is a need for good

relatedness measures (WordNet-based measures are especially poor at estimating semantic re-

latedness).

3.4 An overview of the evaluation

I evaluate the newly proposed distributional concept-distance approach (Figure 3.3) through

its usefulness in various natural language tasks. Tasks or applications that use distance values

can be classi�ed as what I will call concept-distance tasks and word-distance tasks.Concept-

distance tasksrequire distance between explicit senses or concepts (froma sense inventory)
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and other units of text. For example, unsupervised word sense disambiguation (Lin, 1997)

requires the semantic distance between a word's sense and its context. These tasks must be

solved with the sense inventory associated with the task. For example, if the task is to do un-

supervised sense disambiguation on data annotated with senses from WordNet, then either a

WordNet-based approach must be used or the senses from another knowledge source (for ex-

ample, the thesaurus) must be mapped to WordNet.Word-distance tasks, seeminglyat least,

require distances between words. For example, malapropismcorrection (Hirst and Budanitsky,

2005) requires the semantic distance between the spelling variants of the target word and its

context. However, semantic distance is essentially a property of word senses or concepts and

not words (see discussion in the introduction of this thesis—Section 1.1); even though it seems

as if the word-distance task involves only words, what is really needed is the distance between

the intended senses of those words, which tends to be the distance between their closest senses.

These tasks may be independently solved with different sense inventories or even without using

any sense inventory.3 Concept-distance tasks can be attempted with WordNet-based measures

of concept-distance or distributional measures of concept-distance, but not the traditional dis-

tributional measures of word-distance. Word-distance tasks can be attempted with any of the

three types of measures.

In the following section, I will describe experiments usingall three kinds of distance mea-

sures to solve two word-distance tasks. In the next chapter,I will show how distributional

concept-distance measures can be used to estimate semanticdistance in one language using a

knowledge source from another. I will evaluate this cross-lingual approach on another pair of

word-distance tasks. In Chapters 5 and 6, I will show the newly proposed approach can be

used in the concept-distance tasks of word sense dominance and word sense disambiguation.

In Chapter 7, I will show how my cross-lingual semantic distance approach not only overcomes

the knowledge source bottleneck (Chapter 4) but is also useful in tasks that inherently involve

3Traditional distributional word-distance measures do notrequire any sense inventory; however, as a conse-
quence, they con�ate the many senses of a word and give a dominance-based average semantic distance of the
relevant sense pairs.
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two or more languages, such as machine translation.

3.5 Evaluation: monolingual, word-distance tasks

In this section, I describe experiments that evaluated the distributional concept-distance mea-

sures on two monolingual word-distance tasks: ranking wordpairs in order of their semantic

distance and correcting real-word spelling errors. Each task will be described in the subsec-

tions below. I will compare the new approach with state-of-the-art distributional word-distance

measures.

The distributional pro�les of concepts were created from the British National Corpus

(BNC) and theMacquarie Thesaurus. 22.85% of the 98;000� 812 cells in the base WCCM

had non-zero values whereas the statistic in the bootstrapped WCCM was 9.1%.4 The word-

distance measures used a word–word co-occurrence matrix created from theBNCalone. The

BNCwas not lemmatized, part-of-speech tagged, nor chunked. The vocabulary was restricted

to the words present in the thesaurus (about 98,000 word types) both to provide a level evalua-

tion platform and to �lter out named entities and tokens thatare not actually words (for exam-

ple, the BNC hasHahahahahahahahaaaaa, perampam, andOwzeeeyaaaah). Also, in order

to overcome large computation times of distributional word-distance measures, co-occurrence

counts less than �ve were reset to zero, and words that co-occurred with more than 2000 other

words were stoplisted (543 in all). This resulted in a word–word co-occurrence matrix having

non-zero values in 0.02% of its 98;000� 98;000 cells.

I useda-skew divergence (ASD) (a = 0:99), cosine (Cos), Jensen–Shannon divergence

(JSD), and Lin's distributional measure (Lindist)5 to populate corresponding concept–concept

distance matrices and word–word distance matrices. While it is easy to completely pre-compute

the concept–concept distance matrix (due to its small size), completely populating the word–

4TheMacquarie Thesaurushas 98,000 word types and 812 categories.
5Although Lin (1998a) used relation-constrained DPs, in these experiments all DPs are relation-free.
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word distance matrix is non-trivial because of memory and time constraints. Therefore, the

word–word distance matrix was populated on the �y and only tothe extent necessary.

The same distributional measures will be used to solve the word-pair ranking and spelling

correction tasks in two different ways: �rst by calculatingword-distance, and then by calcu-

lating concept-distance. This allows for an even-keeled comparison of the two approaches.

However, comparison with WordNet-based measures is not so straightforward. Both of the

above-mentioned semantic distance tasks have traditionally been performed using WordNet-

based measures—which are good at estimating semantic similarity between nouns but partic-

ularly poor at estimating semantic relatedness between concept pairs other than noun–noun.

This has resulted in the creation of “gold-standard” data only for nouns. As creating new

gold-standard data is arduous, we perform experiments on existing noun data. Of course, even

though it is a given that WordNet-based measures are signi�cantly less applicable than the pro-

posed new approach, it will be interesting to determine how competitive the new approach is

on concept-pairs for which WordNet-based measures can be used and perform best on.

3.5.1 Ranking word pairs

A direct approach to evaluate semantic distance measures isto determine how close they are

to human judgment and intuition. Given a set of word-pairs, humans can rank them in order

of their distance—placing near-synonyms on one end of the ranking and unrelated pairs on

the other. Rubenstein and Goodenough (1965a) provide a “gold-standard” list of 65 human-

ranked word-pairs (based on the responses of 51 subjects). An automatic distance measure is

deemed to be more accurate than another if its ranking of word-pairs correlates more closely

with the human ranking. Measures of concept-distance can determine distance between each

word-pair by �rst �nding the concept-distance between all pairs of senses of the two words,

and then choosing the shortest distance. This is based on theassumption that when humans

are asked to judge the semantic distance between a pair of words, they implicitly consider its

closest senses. For example, most people will agree thatbankandinterestare semantically
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related, even though both have multiple senses—most of which are unrelated. Alternatively,

a concept-distance method can take the average of the distance between each of the relevant

pairs of senses.

Table 3.1 lists correlations of human rankings with those created using the word–word co-

occurrence matrix–based traditional distributional word-distance measures and the correlations

using the newly proposed word–concept co-occurrence matrix–based distributional concept-

distance measures. Observe that the distributional concept-distance measures give markedly

higher correlation values than distributional word-distance measures. (Figure 3.4 depicts the

results in a graph.) Also, using the distance of the closest sense pair (for Cos and Lindist) gives

much better results than using the average distance of all relevant sense pairs. (We do not report

average distance for ASD and JSD because they give very largedistance values when sense-

pairs are unrelated—values that dominate the averages, overwhelming the others, and making

the results meaningless.) These correlations are, however, notably lower than those obtained

by the best WordNet-based measures (not shown in the table),which fall in the range .78 to .84

(Budanitsky and Hirst, 2006).

3.5.2 Correcting real-word spelling errors

The set of Rubenstein and Goodenough word pairs is much too small to safely assume that

measures that work well on them do so for the entire English vocabulary. Consequently, se-

mantic measures have traditionally been evaluated throughmore extensive applications such

as the work by Hirst and Budanitsky (2005) on correctingreal-word spelling errors (or

malapropisms). If a word in a text is not semantically close to any other word in its con-

text, then it is considered asuspect. If the suspect has a spelling-variant thatis semantically

close to a word in its context, then the suspect is declared a probable real-word spelling error

and analarm is raised; the semantically close spelling-variant is considered itscorrection.

Hirst and Budanitsky tested the method on 500 articles from the 1987–89Wall Street Journal

corpus for their experiments, replacing one noun in every 200th word by a spelling-variant
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Table 3.1: Correlations with human ranking of Rubenstein and Goodenough word pairs of auto-

matic rankings using traditional word–word co-occurrence–based distributional word-distance

measures and the newly proposed word–concept co-occurrence–based distributional concept-

distance measures. Best results for each measure-type are shown in boldface.

Measure-type

Word-distance Concept-distance

Distributional measure closest average

a-skew divergence 0.45 0.60 –

cosine 0.54 0.69 0.42

Jensen–Shannon divergence 0.48 0.61 –

Lin's distributional measure 0.52 0.71 0.59

Figure 3.4: Correlations with human ranking of Rubenstein and Goodenough word pairs

of automatic rankings using traditional word–word co-occurrence–based distributional word-

distance measures and the newly proposed word–concept co-occurrence–based distributional

concept-distance measures. Best results for each measure-type are shown in boldface.
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and looking at whether the method could restore the originalword. This resulted in text with

1408 real-word spelling errors out of a total of 107,233 nountokens. I adopt this method and

this test data, but whereas Hirst and Budanitsky used WordNet-based semantic measures, I use

distributional concept- and word-distance measures.

In order to determine whether two words are “semantically close” or not as per any measure

of distance, athreshold must be set. If the distance between two words is less than thethresh-

old, then they will be consideredsemantically close. Hirst and Budanitsky (2005) pointed

out that there is a notably wide band in the human ratings of the Rubenstein and Goodenough

word pairs such that no word-pair was assigned a distance value between 1.83 and 2.36 (on a

scale of 0–4). They argue that somewhere within this band is asuitable threshold between se-

mantically close and semantically distant, and therefore set thresholds for the WordNet-based

measures such that there was maximum overlap in what the automatic measures and human

judgments considered semantically close and distant. Following this idea, I use an automatic

method to determine thresholds for the various distributional concept- and word-distance mea-

sures. Given a list of Rubenstein and Goodenough word pairs ordered according to a distance

measure, I repeatedly consider the mean of all adjacent distance values ascandidate thresh-

olds. Then I determine the number of word-pairs correctly classi�ed as semantically close

or semantically distant for each candidate threshold, considering which side of the band they

lie as per human judgments. The candidate threshold with highest accuracy is chosen as the

threshold.

I follow the Hirst and St-Onge (1998) metrics to evaluate real-word spelling correction.

Suspect ratio and alarm ratio evaluate the processes of identifying suspects and raising

alarms, respectively.

suspect ratio=
number of true-suspects

number of malapropisms
number of false-suspects

number of non-malapropisms

(3.4)

alarm ratio=
number of true-alarms

number of true-suspects
number of false-alarms

number of false-suspects

(3.5)

Detection ratio is the product of the two, and measures overall performance in detecting the
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errors.

detection ratio=
number of true-alarms

number of malapropisms
number of false-alarms

number of non-malapropisms

(3.6)

Correction ratio indicates overall correction performance, and is the “bottom-line” statistic.

correction ratio=
number of corrected malapropisms

number of malapropisms
number of false-alarms

number of non-malapropisms

(3.7)

Values greater than 1 for each of these ratios indicate results better than random guessing. The

ability of the system to determine the intended word, given that it has correctly detected an

error, is indicated by thecorrection accuracy(0 to 1).

correction accuracy=
number of corrected malapropisms

number of true-alarms
(3.8)

Notice that the correction ratio is the product of the detection ratio and correction accuracy. The

overall (single-point) precision (P), recall(R), and F-score (F) of detection are also computed.

P = number of true-alarms
number of alarms (3.9)

R = number of true-alarms
number of malapropisms (3.10)

F = 2� P� R
P+ R (3.11)

The product of detection F-score and correction accuracy, which we will call correction per-

formance, can also be used as a bottom-line performance metric.

Table 3.2 details the performance of distributional word- and concept-distance measures.

For comparison, the table also lists results obtained by Hirst and Budanitsky (2005) using

WordNet-based concept-distance measures: Hirst and St-Onge (1998), Jiang and Conrath

(1997), Leacock and Chodorow (1998), Lin (1997), and Resnik(1995). These information

content measures rely on �nding the lowest common subsumer (lcs) of the target synsets in

WordNet's hypernym hierarchy and use corpus counts to determine how speci�c or general

this concept is. The more speci�c the lcs is and the smaller the difference of its speci�city with

that of the target concepts, the closer the target concepts are considered. (See Section 2.2.1 for

more details.)
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Table 3.2: Real-word spelling error correction. The best results as per the two bottom-line statistics are shown in boldface.

suspect alarm detection correctioncorrection detection correction
Measure ratio ratio ratio accuracy ratio P R F performance

Distributionalword

a-skew divergence 3.36 1.78 5.98 0.84 5.03 7.37 45.53 12.69 10.66

cosine 2.91 1.64 4.77 0.85 4.06 5.97 37.15 10.28 8.74

Jensen–Shannon divergence 3.29 1.77 5.82 0.83 4.88 7.19 44.32 12.37 10.27

Lin's distributional measure 3.63 2.15 7.78 0.84 6.52 9.38 58.38 16.16 13.57

Distributionalconcept

a-skew divergence 4.11 2.54 10.43 0.91 9.49 12.19 25.28 16.44 14.96

cosine 4.00 2.51 10.03 0.90 9.05 11.77 26.99 16.38 14.74

Jensen–Shannon divergence 3.58 2.46 8.79 0.90 7.87 10.47 34.66 16.08 14.47

Lin's distributional measure 3.02 2.60 7.84 0.88 6.87 9.45 36.86 15.04 13.24

WNetconcept

Hirst–St-Onge 4.24 1.95 8.27 0.93 7.70 9.67 26.33 14.15 13.16

Jiang–Conrath 4.73 2.97 14.02 0.92 12.91 14.33 46.22 21.88 20.13

Leacock–Chodrow 3.23 2.72 8.80 0.83 7.30 11.56 60.33 19.40 16.10

Lin's WordNet-based measure 3.57 2.71 9.70 0.87 8.48 9.56 51.56 16.13 14.03

Resnik 2.58 2.75 7.10 0.78 5.55 9.00 55.00 15.47 12.07
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Figure 3.5: Correcting real-word spelling errors

Observe that the correction ratio results for the distributional word-distance measures are

poor compared to distributional concept-distance measures; the concept-distance measures are

clearly superior, in particulara-skew divergence and cosine. (Figure 3.5 depicts the results in

a graph.) Moreover, if we consider correction ratio to be thebottom-line statistic, then three

of the four distributional concept-distance measures outperform all WordNet-based measures

except the Jiang–Conrath measure. If we consider correction performance to be the bottom-

line statistic, then again we see that the distributional concept-distance measures outperform

the word-distance measures, except in the case of Lin's distributional measure, which gives

slightly poorer results with concept-distance. Also, in contrast to correction ratio values, us-

ing the Leacock–Chodorow measure results in relatively higher correction performance values

than the best distributional concept-distance measures. While it is clear that the Leacock–

Chodorow measure is relatively less accurate in choosing the right spelling-variant for an alarm

(correction accuracy), detection ratio and detectionF-score present contrary pictures of rela-

tive performance in detection. As the correction ratio is determined by the product of a number

of ratios, each evaluating the various stages of malapropism correction (identifying suspects,

raising alarms, and applying the correction), I believe it is a better indicator of overall perfor-

mance than correction performance, which is a not-so-elegant product of anF-score and accu-
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racy. However, no matter which of the two is chosen as the bottom-line performance statistic,

the results show that the newly proposed distributional concept-distance measures are clearly

superior to word-distance measures. Further, of all the WordNet-based measures, only that

proposed by Jiang and Conrath outperforms the best distributional concept-distance measures

consistently with respect to both bottom-line statistics.

3.6 Related work

Apart from the vast array of work on WordNet-based and distributional word-distance measures

(summarized in Chapter 2), below is a brief description of work related speci�cally to that

described in this chapter.

Yarowsky (1992) proposed a model for unsupervised word sense disambiguation using

Roget's Thesaurus. A mutual information–like measure was used to identify words that best

represent each category in the thesaurus, which he calls thesalient words. The presence of

a salient word in the context of a target word is evidence thatthe word is used in a sense

corresponding to the salient word. The evidence is incorporated in a Bayesian model. The

word-category co-occurrence matrix I created can be seen asa means of determining the degree

of salience of any word co-occurring with a concept. I further improved the accuracy of the

WCCM using simple bootstrapping techniques.

Pantel (2005) also provides a way to create co-occurrence vectors for WordNet senses.

The lexical co-occurrence vectors of words in a leaf node arepropagated up the WordNet hi-

erarchy. A parent node inherits those co-occurrences that are shared by its children. Lastly,

co-occurrences not pertaining to the leaf nodes are removedfrom its vector. Even though the

methodology attempts at associating a WordNet node or sensewith only those co-occurrences

that pertain to it, no attempt is made at correcting the frequency counts. After all,word1–

word2co-occurrence frequency (or association) is likely not thesame asSENSE1–word2 co-

occurrence frequency (or association), simply becauseword1 may have senses other than
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SENSE1, as well. Further, in the Pantel (2005) system, the co-occurrence frequency associ-

ated with a parent node is the weighted sum of co-occurrence frequencies of its children. The

frequencies of the child nodes are used as weights. Sense ambiguity issues apart, this is still

problematic because a parent concept (say,BIRD) may co-occur much more frequently (or

infrequently) with a word than its children. In contrast, the bootstrapped WCCM not only

identi�es which words co-occur with which concepts, but also has more accurate estimates of

the co-occurrence frequencies.

Patwardhan and Pedersen (2006) createaggregate co-occurrence vectorsfor a WordNet

sense by adding the co-occurrence vectors of the words in itsWordNet gloss. The distance

between two senses is then determined by the cosine of the angle between their aggregate

vectors. However, such aggregate co-occurrence vectors are expected to be noisy because they

are created from data that is not sense-annotated. The bootstrapping procedure introduced

in Section 3.3.2 minimizes such errors and as I will show in Chapter 5 markedly improves

accuracies of natural language tasks that use these co-occurrence vectors.

Véronis (2004) presents a graph theory–based approach to identify the various senses of

a word in a text corpus without the use of a dictionary. For each target word, a graph of

inter-connected nodes is created. Every word that co-occurs with the target word is a node.

Two nodes are connected with an edge if they are found to co-occur with each other. Highly

interconnected components of the graph represent the different senses of the target word. The

node (word) with the most connections in a component is representative of that sense and its

associations with words that occur in a test instance are used to quantify evidence that the target

word is used in the corresponding sense. However, these strengths of association are at best

only rough estimates of the associations between the sense and co-occurring words, since a

sense in his system is represented by a single (possibly ambiguous) word.
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3.7 Conclusion

I have proposed a framework that allows distributional measures to estimate concept-distance

using a published thesaurus and raw text. These distributional concept-distance measures

are more intuitive proxies for semantic measures than distributional word-distance measures.

I evaluated them in comparison with traditional distributional word-distance measures and

WordNet-based measures through their ability to rank word-pairs in order of their human-

judged linguistic distance, and their ability to correct real-word spelling errors.

I showed that distributional concept-distance measures outperformed word-distance mea-

sures in both tasks. They do not perform as well as the best WordNet-based measures in ranking

a small set of word pairs, but in the task of correcting real-word spelling errors, they beat all

WordNet-based measures except for Jiang–Conrath (which ismarkedly better) and Leacock–

Chodorow (which is slightly better if we consider correction performance as the bottom-line

statistic, but slightly worse if we rely on correction ratio). It should be noted that the Ruben-

stein and Goodenough word-pairs used in the ranking task, aswell as all the real-word spelling

errors in the correction task, are nouns. We expect that the WordNet-based measures will per-

form poorly when other parts of speech are involved, as thosehierarchies of WordNet are not

as extensively developed. Further, the various hierarchies are not well connected, nor is it clear

how to use these interconnections across parts of speech forcalculating semantic distance. On

the other hand, our DPC-based measures do not rely on any hierarchies (even if they exist in a

thesaurus) but on sets of words that unambiguously represent each sense. Further, because our

measures are tied closely to the corpus from which co-occurrence counts are made, we expect

the use of domain-speci�c corpora to give even better results.

Both DPW- and WordNet-based measures have large space and time requirements for pre-

computing and storing all possible distance values for a language. However, by using the cate-

gories of a thesaurus as very coarse concepts, pre-computing and storing all possible distance

values for our DPC-based measures requires a matrix of size only 812� 812. This level of

concept-coarseness might seem drastic at �rst glance, but results show that distributional mea-
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sures of distance between these coarse concepts are surprisingly accurate in natural language

tasks. Part of future work is to try an intermediate degree ofcoarseness (still much coarser than

WordNet) by using the paragraph subdivisions of the thesaurus instead of its categories to see

if that gives even better results (see Future Directions Section 8.5) for more discussion.

This newly proposed distributional approach of concept-distance has all the attractive fea-

tures of a distributional measure, and yet avoids problems of sense-con�ation (limitation 1.2.3.1)

and computationally complexity (limitation 1.2.1.1). As it calculates distance between coarse

senses, each represented by many words, even if some words are not seen often in a text cor-

pus, all concepts have suf�cient representation even in small corpora, thereby avoiding the

data sparseness problem (limitation 1.2.3.2). However, because this method uses a published

thesaurus, the lack of high-quality knowledge sources in most languages (limitation 1.2.2.1)

remains a problem. Also, the approach as proposed is still monolingual (limitation 1.2.1.2).

The next chapter addresses both these issues by making the approach cross-lingual.



Chapter 4

Cross-lingual Semantic Distance1

4.1 The knowledge-source bottleneck

Accurately estimating semantic distance, as discussed earlier in Section 1.1 of Chapter 1, has

pervasive applications in computational linguistics, including machine translation, information

retrieval, speech recognition, spelling correction, and text categorization. However, applying

algorithms for semantic distance to most languages is hindered by the lack of high-quality lin-

guistic resources. WordNet-based measures of semantic distance, such as those of Jiang and

Conrath (1997) and Resnik (1995), require a WordNet which does not exist for most languages.

Distributional measures of word-distance, such as cosine and a-skew divergence, rely simply

on raw text, but as I showed in the previous chapter, are much less accurate because they con-

�ate the many senses of a word. Distributional measures of concept-distance combine written

text with a published thesaurus to measure distance betweenconcepts(or word senses) using

distributional measures, such as cosine anda-skew divergence. They avoid sense con�ation

and achieve results better than the traditional word-distance measures and indeed also most

1This chapter describes work done in collaboration with Torsten Zesch and Iryna Gurevych of Darmstadt
University of Technology. They played a pivotal role in the evaluation of the ideas presented here. They compiled
the ”gold-standard” data for theReader's Digestword choice task and the ranking of German word pairs in order
of their semantic distance. They also provided baseline semantic distance values as per state-of-the-art GermaNet
measures. I am grateful for their contributions and an enriching collaboration.
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of the WordNet-based semantic measures (also shown in the previous chapter). Further, the

distributional concept-distance measures are much more applicable than the WordNet-based

measures, which are only good at estimating semantic similarity between noun pairs. How-

ever, the high-quality thesauri and (to a much greater extent) WordNet-like resources that these

concept-distance methods require do not exist for most of the 3000–6000 languages in exis-

tence today and they are costly to create. While such linguistic resources are being created for

English, Chinese, Spanish, Bengali, Hindi, and German—languages that enjoy a large number

of speakers—others such as Pashto (Afghanistan), Kannada (South Indian), Greek, and Kazakh

are largely ignored, let alone Swahili (African), Cherokee(native American), Guarani (indige-

nous South American), and such. This chapter proposes a way to overcome this knowledge

bottleneck.

I introducecross-lingual distributional measures of concept-distance, or simplycross-

lingual measures, that determine the distance between a word pair in resource-poor language

L1 using a knowledge source in a resource-rich languageL2. An L1–L2 bilingual lexicon2

will be used to map words in the resource-poor language to words in the resource-rich one. I

will compare this approach with the best monolingual approaches, which usually require high-

quality knowledge sources in the same language (L1); the smaller the loss in performance, the

more capable the cross-lingual algorithm is of overcoming ambiguities in word translation. An

evaluation, therefore, requires anL1 that in actuality has adequate knowledge sources. There-

fore I chose German to stand in as the resource-poor languageL1; the monolingual evaluation

in German will use GermaNet. I chose English as the resource-rich L2; the cross-lingual eval-

uation will use theMacquarie Thesaurus. The evaluation tasks will involve estimating the

semantic distance between German words. Both monolingual and cross-lingual approaches

will use the same German corpus, but while the monolingual approach will use a knowledge

source in the same language, the German GermaNet, the cross-lingual approach (which I will

2For most languages that have been the subject of academic study, there exists at least a bilingual lexicon
mapping the core vocabulary of that language to a major worldlanguage and a corpus of at least a modest size.
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star

Stern Bank

bank bench

}

}

}CELEBRITY BODY INSTITUTION
CELESTIAL

BANK
RIVER

FURNITURE JUDICIARY
FINANCIAL

wen

wde

cen

Figure 4.1: The cross-lingual candidate senses of German words SternandBank. In red are

concepts not really senses of the German words, but simply artifacts of the translation step.

describe ahead) will use a knowledge source from another language, the EnglishMacquarie

Thesaurus. The remainder of the chapter describes our approach in terms of German and En-

glish, but the algorithm itself is language independent.

4.2 Cross-lingual senses, cross-lingual distributional pro�les,

and cross-lingual distributional distance

Given a German wordwde in context, we use a German–English bilingual lexicon to determine

its different possible English translations. Each Englishtranslationwen may have one or more

possible coarse senses, as listed in an English thesaurus. These English thesaurus concepts

(cen) will be referred to as thecross-lingual candidate sensesof the German wordwde. Figure

4.1 depicts examples. They are called “candidate” because some of the senses ofwen might

not really be senses ofwde. For example,CELESTIAL BODY andCELEBRITY are both senses

of the English wordstar, but the German wordSterncan only meanCELESTIAL BODY and not

CELEBRITY. Similarly, the GermanBankcan meanFINANCIAL INSTITUTION or FURNITURE,

but notRIVER BANK or JUDICIARY. An automated system has no straightforward method of

teasing out the actual cross-lingual senses ofwde from those that are an artifact of the translation

step. So we treat them all as its senses. Now, I proceed to determine semantic distance just as in

the monolingual case, except that the words are German and their senses are English thesaurus

categories. Table 4.1 presents a mini vocabulary of German words needed to understand the
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Table 4.1: Vocabulary of German words needed to understand this discussion.

German word Meaning(s) German word Meaning(s)

Bank 1. �nancial institution Licht light

2. bench (furniture) Morgensonne morning sun

berühmt famous Raum space

Bombe bomb reich rich

Erwärmung heat Sonne sun

Film movie (motion picture) Star star (celebrity)

Himmelsk̈orper heavenly body Stern star (celestial body)

Konstellation constellation Verschmelzung fusion

discussion in this chapter.

As in the monolingual estimation of distributional concept-distance, the distance between

two concepts is calculated by �rst determining their DPs. Recall the example monolingual DPs

of the two senses ofstar:

CELESTIAL BODY (celestial body, sun, . . .): space0.36,light 0.27,constellation

0.11,hydrogen0.07, . . .

CELEBRITY (celebrity, hero, . . .): famous0.24,movie0.14,rich 0.14,fan0.10, . . .

In the cross-lingual approach, a concept is now glossed by near-synonymous words in anEn-

glishthesaurus, whereas its pro�le is made up of the strengths of association with co-occurring

Germanwords. I will call themcross-lingual distributional pro�les of conceptsor justcross-

lingual DPCs. Here are constructed examples for the two cross-lingual candidate senses of the

German wordStern:

CELESTIAL BODY (celestial body, sun, . . .): Raum0.36,Licht 0.27,Konstellation

0.11, . . .

CELEBRITY (celebrity, hero, . . .): berühmt0.24,Film 0.14,reich0.14, . . .
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The values are the strength of association (usually pointwise mutual information or conditional

probability) of the target concept with co-occurring words. In order to calculate the strength

of association, we must �rst determine individual word and concept counts, as well as their

co-occurrence counts. The next section describes how thesecan be estimated without the use

of any word-aligned parallel corpora and without any sense-annotated data. The closer the

cross-lingual DPs of two concepts, the smaller is their semantic distance. Just as in the case

of monolingual distributional concept-distance measures(described in the previous chapter),

distributional measures can be used to estimate the distance between the cross-lingual DPs of

two target concepts. For example, recall how cosine is used in a monolingual framework to

estimate distributional distance between two concepts (described in Section 3.2 earlier):

Coscp(c1;c2) =
å w2C(c1)[ C(c2) (P(wjc1) � P(wjc2))

q
å w2C(c1) P(wjc1)2 �

q
å w2C(c2) P(wjc2)2

(4.1)

C(x) is the set of English words that co-occur with Englishconcept xwithin a pre-determined

window. The conditional probabilities in the formula are taken from the monolingual distribu-

tional pro�les of concepts. We can adapt the formula to estimate cross-lingual distributional

distance between two concepts as shown below:

Cos(cen
1 ;cen

2 ) =
å wde2C(cen

1 )[ C(cen
2 )

�
P(wdejcen

1 ) � P(wdejcen
2 )

�

q
å wde2C(cen

1 ) P(wdejcen
1 )2 �

q
å wde2C(cen

2 ) P(wdejcen
2 )2

(4.2)

C(x) is now the set of German words that co-occur with English concept x within a pre-

determined window. The conditional probabilities in the formula are taken from the cross-

lingual DPCs.

If the distance between two German words is required, then the distance between all rel-

evant English cross-lingual candidate sense pairs is determined and the minimum is chosen.

For example, ifSternhas the two cross-lingual candidate senses mentioned aboveandVer-

schmelzunghas one (FUSION), then the distance between them is determined by �rst applying

Cosine (or any distributional measure) to the cross-lingual DPs ofCELESTIAL BODY andFU-

SION:
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CELESTIAL BODY (celestial body, sun, . . .): Raum0.36,Licht 0.27,Konstellation

0.11, . . .

FUSION (thermonuclear reaction, atomic reaction, . . .): Erwäermung0.16,Bombe

0.09,Licht 0.09,Raum0.04, . . .

Then applying cosine to the cross-lingual DPs ofCELEBRITY andFUSION:

CELEBRITY (celebrity, hero, . . .): berühmt0.24,Film 0.14,reich0.14, . . .

FUSION (thermonuclear reaction, atomic reaction, . . .): Erwärmung0.16,Bombe

0.09,Licht 0.09,Raum0.04, . . .

And �nally choosing the one with minimum semantic distance,that is, maximum similar-

ity/relatedness:

distance(Stern;Verschmelzung) = max(Cos(CELEBRITY; FUSION);Cos(CELESTIAL BODY; FUSION))

(4.3)

Maximum is chosen because cosine is a similarity/relatedness measure. In case of distance

measures, such asa Skew Divergence, the minimum will be chosen.

4.3 Estimating cross-lingual DPCs

Determining cross-lingual distributional pro�les of concepts requires information about which

words in one languageL1 co-occur with which concepts as de�ned in another languageL2.

This means that a direct approach requires the text inL1, from which counts are made, to

have a word-aligned parallel corpus inL2. Further, theL2 text must be sense annotated. Such

data exists rarely, if at all, and it is expensive to create. Thus, another way to obtain these

counts must be devised. I now present a way to estimate cross-lingual distributional pro�les of

concepts from raw-text (in one language,L1) and a published thesaurus (in another language,

L2) using anL1–L2 bilingual lexicon and a bootstrapping algorithm.
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4.3.1 Creating cross-lingual word–category co-occurrence matrix

I create a cross-lingual word–category co-occurrence matrix with German word typeswde as

one dimension and English thesaurus conceptscen as another.

cen
1 cen

2 : : : cen
j : : :

wde
1 m11 m12 : : : m1j : : :

wde
2 m21 m22 : : : m2j : : :
...

...
...

...
...

...

wde
i mi1 mi2 : : : mi j : : :
...

...
... : : :

...
...

The matrix is populated with co-occurrence counts from a large German corpus. A particular

cell mi j , corresponding to wordwde
i and conceptcen

j , is populated with the number of times

the German wordwde
i co-occurs (in a window of� 5 words) with any German word havingcen

j

as one of itscross-lingual candidate senses. For example, theRaum–CELESTIAL BODY cell

will have the sum of the number of timesRaumco-occurs withHimmelsk̈orper, Sonne, Mor-

gensonne, Star, Stern, and so on (see Figure 4.2). This matrix, created after a �rstpass of the

corpus, is called thecross-lingual base WCCM. A contingency table for any particular Ger-

man wordwde and English categorycen can be easily generated from the WCCM by collapsing

cells for all other words and categories into one and summingup their frequencies.

cen : cen

wde nwdecen nwde:

: wde n: cen n::

The application of a suitable statistic, such as PMI or conditional probability, will then yield

the strength of association between the German word and the English category.

As the cross-lingual base WCCM is created from unannotated text, it is expected to be

noisy (for the same word-sense-ambiguity reasons as to why the monolingual base WCCM

is noisy—explained in Section 3.3.1 earlier). Yet, again, the cross-lingual base WCCM does

capture strong associations between a category (concept) and co-occurring words (just like the
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celestial body star

Star SternSonne Morgensonne

sun ... }

... }

}

Himmelsk̈orper

wen

wde

CELESTIAL BODY cen

Figure 4.2: Words havingCELESTIAL BODY as one of their cross-lingual candidate senses.

monolingual base WCCM). For example, even though we increment counts for bothRaum–

CELESTIAL BODY andRaum–CELEBRITY for a particular instance whereRaumco-occurs with

Star, Raumwill co-occur with a number of words such asHimmelsk̈orper, Sonne,andMor-

gensonnethat each have the sense ofCELESTIAL BODY in common (see Figures 4.2 and 4.3),

whereas all their other senses are likely different and distributed across the set of concepts.

Therefore, the co-occurrence count ofRaumandCELESTIAL BODY, and thereby their strength

of association, will be relatively higher than those ofRaumandCELEBRITY (Figure 4.4).

4.3.2 Bootstrapping

As in the monolingual case, a second pass of the corpus is madeto disambiguate the (German)

words in it. Each word in the corpus is considered as the target one at a time. For each cross-

lingual candidate sense of the target, its strength of association with each of the words in its

context (� 5 words) is summed. The sense that has the highest cumulativeassociation with

co-occurring words is chosen as the intended sense of the target word. A new bootstrapped

WCCM is created by populating each cellmi j , corresponding to wordwde
i and conceptcen

j ,

with the number of times the German wordwde
i co-occurs with any German wordused in

cross-lingual sense cen
j . (Again, this is just like the monolingual bootstrapping—explained

earlier in Section 3.3.2.) A statistic such as PMI is then applied to these counts to determine

the strengths of association between a target concept and co-occurring words, giving the cross-

lingual distributional pro�le of the concept.
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Raum

........

CELESTIAL BODY

x
a fragment of text

other sense(s) ofx

x 2 f Stern, Sonne, Himmelskörper, Morgensonne, Konstellationg

one sense ofx

Figure 4.3: The wordRaumwill also co-occur with a number of other wordsx that each have

one sense ofCELESTIAL BODY in common.

Raum Stern

CELESTIAL BODY

CELEBRITY

SoA

SoA
a fragment of text

sense ofStern

sense ofStern

Figure 4.4: The base WCCM captures strong word–category co-occurrence associations.

4.4 Evaluation

We evaluate the newly proposed cross-lingual distributional measures of concept-distance on

the tasks of (1) measuring semantic distance between Germanwords and ranking German

word pairs according to semantic distance, and (2) solving German `Word Power' questions

from Reader's Digest. The cross-lingual approach uses the following resources:the German

newspaper corpustaz3 (Sep 1986 to May 1999; 240 million words), the EnglishMacquarie

Thesaurus(Bernard, 1986) (about 98,000 words), and the German–English bilingual lexicon

BEOLINGUS4 (about 265,000 entries). Multi-word expressions in the thesaurus and the bilin-

3http://www.taz.de
4http://dict.tu-chemnitz.de
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Table 4.2: Distance measures used in the experiments.
(Cross-lingual) Distributional Measures (Monolingual) GermaNet Measures

Information Content–based Lesk-like

a-skew divergence (Lee, 2001) Jiang and Conrath (1997) hypernym pseudo-gloss (Gurevych, 2005)

cosine (Schütze and Pedersen, 1997) Lin (1998c) radial pseudo-gloss (Gurevych, 2005)

Jensen-Shannon divergence (Dagan et al., 1994) Resnik (1995)

Lin (1998a)

gual lexicon were ignored. We used a context of� 5 words on either side of the target word for

creating the base and bootstrapped WCCMs. No syntactic pre-processing was done, nor were

the words stemmed, lemmatized, or part-of-speech tagged.

In order to compare results with state-of-the-art monolingual approaches we conducted

experiments using GermaNet measures as well. The speci�c distributional measures and

GermaNet-based measures used are listed in Table 4.2. Jensen–Shannon divergence anda-

skew divergence calculate the difference in distributionsof words that co-occur with the tar-

gets. Lin's distributional measure and Lin's GermaNet measure follow from his information-

theoretic de�nition of similarity (Lin, 1998c). The GermaNet measures used are of two kinds:

(1) information content measures, and (2) Lesk-like measures that rely onn-gram overlaps in

the glosses of the target senses, proposed by Gurevych (2005). As GermaNet does not have

glosses for synsets, Gurevych (2005) proposed a way of creating a bag-of-words-type pseudo-

gloss for a synset by including the words in the synset and in synsets close to it in the network.

The information content measures rely on �nding the lowest common subsumer (lcs) of the

target synsets in a hypernym hierarchy and using corpus counts to determine how speci�c or

general this concept is. The more speci�c the lcs is and the smaller the difference of its speci-

�city with that of the target concepts, the closer the targetconcepts are.
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Table 4.3: Comparison of datasets used for evaluating semantic distance in German.

Dataset Year Language # pairs PoS Scores # subjects Correlation

Gur65 2005 German 65 N discretef 0,1,2,3,4g 24 .810

Gur350 2006 German 350 N, V, A discretef 0,1,2,3,4g 8 .690

4.4.1 Ranking word pairs

4.4.1.1 Data

A direct approach to evaluate distance measures is to compare them with human judgments.

Gurevych (2005) and Zesch et al. (2007b) asked native Germanspeakers to mark two different

sets of German word pairs with distance values. Set 1 (Gur65) is the German translation of the

English Rubenstein and Goodenough (1965b) dataset. It has 65 noun–noun word pairs. Set 2

(Gur350) is a larger dataset containing 350 word pairs made up of nouns, verbs, and adjectives.

The semantically close word pairs in Gur65 are mostly synonyms or hypernyms (hyponyms) of

each other, whereas those in Gur350 have both classical and non-classical relations (Morris and

Hirst, 2004) with each other. Details of thesesemantic distance benchmarks5 are summarized

in Table 4.3. Inter-subject correlations are indicative ofthe degree of ease in annotating the

datasets.

4.4.1.2 Results and Discussion

Word-pair distances determined using different distance measures are compared in two ways

with the two human-created benchmarks. The rank ordering ofthe pairs from closest to most

distant is evaluated with Spearman's rank order correlation r ; the distance judgments them-

selves are evaluated with Pearson's correlation coef�cient r. The higher the correlation, the

more accurate the measure is. Spearman's correlation ignores actual distance values after a list

is ranked—only the ranks of the two sets of word pairs are compared to determine correlation.

5The datasets are publicly available athttp://www.ukp.tu-darmstadt.de/data/
semRelDatasets .
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On the other hand, Pearson's coef�cient takes into account actual distance values. So even if

two lists are ranked the same, but one has distances between consecutively-ranked word-pairs

more in line with human-annotations of distance than the other, then Pearson's coef�cient will

capture this difference. However, this makes Pearson's coef�cient sensitive to outlier data

points, and so one must interpret it with caution.

Table 4.4 shows the results. Observe that on both datasets and by both measures of corre-

lation, cross-lingual measures of concept-distance perform not just as well as the best mono-

lingual measures, but in fact better. (Figure 4.5 depicts the results in a graph.) In general,

the correlations are lower for Gur350 as it contains cross-PoS word pairs and non-classical

relations, making it harder to judge even by humans (as shownby the inter-annotator cor-

relations for the datasets in Table 4.3).6 Considering Spearman's rank correlation,a-skew

divergence and Jensen-Shannon divergence perform best on both datasets. The correlations

of cosine and Lin's distributional measure are not far behind. Amongst the monolingual Ger-

maNet measures, radial pseudo-gloss performs best. Considering Pearson's correlation, Lin's

distributional measure performs best overall and radial pseudo-gloss does best amongst the

monolingual measures.

4.4.2 Solving word choice problems fromReader's Digest

4.4.2.1 Data

Our approach to evaluating distance measures follows that of Jarmasz and Szpakowicz (2003),

who evaluated semantic similarity measures through their ability to solve synonym problems

(80 TOEFL (Landauer and Dumais, 1997), 50 ESL (Turney, 2001), and 300 (English)Reader's

DigestWord Power questions). Turney (2006) used a similar approach to evaluate the identi�-

cation of semantic relations, with 374 college-level multiple-choice word analogy questions.

6One can also note that the drop in correlation when moving from classical to non-classical relations is some-
what higher for the automatic measures than for humans. However, it is unclear what we can conclude from
this.
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Table 4.4: Correlations of distance measures with human judgments. The best results obtained

using monolingual and cross-lingual measures are marked inbold.

Gur65 Gur350

Spearman's Pearson's Spearman's Pearson's

Measure rank correlation correlation rank correlation cor relation

Monolingual

hypernym pseudo-gloss 0.672 0.702 0.346 0.331

radial pseudo-gloss 0.764 0.565 0.492 0.420

Jiang and Conrath measure 0.665 0.748 0.417 0.410

Lin's GermaNet measure 0.607 0.739 0.475 0.495

Resnik's measure 0.623 0.722 0.454 0.466

Cross-lingual

a-skew divergence 0.794 0.597 0.520 0.413

cosine 0.778 0.569 0.500 0.212

Jensen-Shannon divergence 0.793 0.633 0.522 0.422

Lin's distributional measure 0.775 0.816 0.498 0.514

Figure 4.5: Ranking German word pairs
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Issues of the German edition ofReader's Digestinclude a word choice quiz called `Word

Power'. Each question has one target word and four alternative words or phrases; the objective

is to pick the alternative that is most closely related to thetarget. The correct answer may

be a near-synonym of the target or it may be related to the target by some other classical or

non-classical relation (usually the former). For example:7

Duplikat (duplicate)

a. Einzelsẗuck(single copy) b.Doppelkinn(double chin)

c. Nachbildung(replica) d.Zweitschrift(copy)

As part our collaboration, Torsten Zesch compiled theReader's Digest Word Power (RDWP)

benchmark for German, which consists of 1072 of these word-choice problems collected from

the January 2001 to December 2005 issues of the German-language edition (Wallace and Wal-

lace, 2005). Forty-four problems that had more than one correct answer and twenty problems

that used a phrase instead of a single term as the target were discarded. The remaining 1008

problems form our evaluation dataset, which is signi�cantly larger than any of the previous

datasets employed in a similar evaluation.

We evaluate the various cross-lingual and monolingual distance measures by their ability

to choose the correct answer. The distance between the target and each of the alternatives is

computed by a measure, and the alternative that is closest ischosen. If two or more alternatives

are equally close to the target, then the alternatives are said to be tied. If one of the tied

alternatives is the correct answer, then the problem is counted as correctly solved, but the

corresponding score is reduced. The system assigns a score of 0.5, 0.33, and 0.25 for 2, 3,

and 4 tied alternatives, respectively (in effect approximating the score obtained by randomly

guessing one of the tied alternatives). If more than one alternative has a sense in common with

the target, then the thesaurus-based cross-lingual measures will mark them each as the closest

sense. However, if one or more of these tied alternatives is in the same semicolon group of

the thesaurus as the target, then only these are chosen as theclosest senses. Recall that words

7English translations are in parentheses.
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in a thesaurus category are further partitioned into different paragraphs and each paragraph

into semicolon groups. Words within a semicolon group are more closely related than those in

semicolon groups of the same paragraph or category.

Even though we discard questions from the German RDWP dataset that contained a phrasal

target, we did not discard questions that had phrasal alternatives simply because of the large

number of such questions. Many of these phrases cannot be found in the knowledge sources

(GermaNet orMacquarie Thesaurusvia translation list). In these cases, we remove stopwords

(prepositions, articles, etc.) and split the phrase into component words. As German words in

a phrase can be highly in�ected, all components are lemmatized. For example, the targetima-

ginär (imaginary) hasnur in der Vorstellung vorhanden(exists only in the imagination) as one

of its alternatives. The phrase is split into its component wordsnur, Vorstellung,andvorhan-

den. The system computes semantic distance between the target and each phrasal component

and selects the minimum value as the distance between targetand potential answer.

4.4.2.2 Results and Discussion

Table 4.5 presents the results obtained on the German RDWP benchmark for both monolin-

gual and cross-lingual measures. Only those questions for which the measures have some

distance information are attempted; the column `# attempted' shows the number of questions

attempted by each measure, which is the maximum score that the measure can hope to get.

Observe that the thesaurus-based cross-lingual measures have a much larger coverage than the

GermaNet-based monolingual measures. The cross-lingual measures have a much larger num-

ber of correct answers too (column `# correct'), but this number is bloated due to the large

number of ties. We see more ties when using the cross-lingualmeasures because they rely

on theMacquarie Thesaurus, a very coarse-grained sense inventory (around 800 categories),

whereas the monolingual measures operate on the �ne-grained GermaNet. `Score' is the score

each measure gets after it is penalized for the ties. The cross-lingual measures cosine, Jensen-

Shannon divergence, and Lin's distributional measure obtain the highest scores. But `Score'
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by itself does not present the complete picture either as, given the scoring scheme, a measure

that attempts more questions may get a higher score just fromrandom guessing. We therefore

present precision (P), recall (R), andF measure (F):

P = Score
# attempted (4.4)

R = Score
1008 (4.5)

F = 2� P� R
P+ R (4.6)

Figure 4.6 depicts the results in a graph. Observe that the cross-lingual measures have a higher

coverage (recall) than the monolingual measures but lower precision. TheF measures show

that the best cross-lingual measures do slightly better than the best monolingual ones, despite

the large number of ties. The measures of cosine, Jensen-Shannon divergence, and Lin's distri-

butional measure remain the best cross-lingual measures, whereas hypernym pseudo-gloss and

radial pseudo-gloss are the best monolingual ones.

4.5 Conclusion

I have proposed a new method to determine semantic distance in a possibly resource-poor lan-

guage by combining its text with a knowledge source in a different, preferably resource-rich,

language. Speci�cally, I combined German text with an English thesaurus to create cross-

lingual distributional pro�les of concepts—the strengthsof association between English the-

saurus senses (concepts) of German words and co-occurring German words—using a German–

English bilingual lexicon and a bootstrapping algorithm designed to overcome ambiguities of

word-senses and translations. Notably, I do so without the use of sense-annotated text or word-

aligned parallel corpora. I did not parse or chunk the text, nor did I stem, lemmatize, or

part-of-speech-tag the words.

I used the cross-lingual DPCs to estimate semantic distanceby developing new cross-

lingual distributional measures of concept-distance. These measures are like the distributional
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Table 4.5: Performance of distance measures on word choice problems. The best results ob-

tained using monolingual and cross-lingual measures are marked in bold.

Reader's Digest Word Power benchmark

Measure # attempted # correct # ties Score P R F

Monolingual

hypernym pseudo-gloss 222 174 11 171.5 .77 .17 .28

radial pseudo-gloss 266 188 15 184.7 .69 .18 .29

Jiang and Conrath 357 157 1 156.0 .44 .16 .23

Lin's GermaNet measure 298 153 1 152.5 .51 .15 .23

Resnik's measure 299 154 33 148.3 .50 .15 .23

Cross-lingual

a-skew divergence 438 185 81 151.6 .35 .15 .21

cosine 438 276 90 223.1 .51 .22 .31

Jensen-Shannon divergence 438 276 90229.6 .52 .23 .32

Lin's distributional measure 438 274 90 228.7 .52 .23 .32

Figure 4.6: Solving word choice problems.
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measures of concept-distance (Mohammad and Hirst, 2006a, 2006b), except they can deter-

mine distance between words in one language using a thesaurus in a different language. I evalu-

ated the cross-lingual measures against the best monolingual ones operating on a WordNet-like

resource, GermaNet, through an extensive set of experiments on two different German seman-

tic distance benchmarks. In the process, my collaborators (Iryna Gurevych and Torsten Zesch)

compiled a large German benchmark ofReader's Digestword choice problems suitable for

evaluating semantic-relatedness measures. Most previoussemantic distance benchmarks are

either much smaller or cater primarily to semantic similarity measures.

Even with the added ambiguity of translating words from one language to another, the

cross-lingual measures performed better than the best monolingual measures on both the word-

pair task and theReader's Digestword-choice task. Further, in the word-choice task, the

cross-lingual measures achieved a signi�cantly higher coverage than the monolingual measure.

The richness of English resources seems to have a major impact, even though German, with

GermaNet, a well-established resource, is in a better position than most other languages. This

is indeed promising, because achieving broad coverage for resource-poor languages remains

an important goal as we integrate state-of-the-art approaches in natural language processing

into real-life applications. These results show that the proposed algorithm can successfully

combine German text with an English thesaurus using a bilingual German–English lexicon to

obtain state-of-the-art results in measuring semantic distance.

These results also support the broader and far-reaching claim that natural language prob-

lems in a resource-poor language can be solved using a knowledge source in a resource-rich

language (for example the cross-lingual PoS tagger of Cucerzan and Yarowsky (2002)). Cross-

lingual DPCs also have tremendous potential in tasks inherently involving more than one lan-

guage. In Chapter 7 ahead, I investigate the use of cross-lingual DPCs in word translation. This

work will act as a launching pad for other multilingual efforts on machine translation (Section

8.5.1), multi-language multi-document summarization (Section 8.5.2), multilingual informa-

tion retrieval (Section 8.5.3), and multilingual documentclustering (Section 8.5.4). I believe
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that the future of natural language processing lies not in standalone monolingual systems but

in those that are powered by automatically created multilingual networks of information.



Chapter 5

Determining Word Sense Dominance

5.1 Introduction

In the last two chapters, I showed how corpus statistics can be combined with a published

thesaurus to estimate semantic distance. I evaluated the new approach, in both monolingual and

cross-lingual frameworks, on certain word-distance tasks(tasks that do not explicitly require

distance between a concept and another unit of language, butrather, seemingly at least, require

the distance between words). Those were tasks where distributional pro�les of words (DPWs)

can and have been used, but, as I have shown, using distributional pro�les of concepts (DPCs)

gives as much better results. In this chapter, I describe theuse of DPCs in a task where DPWs

alone cannot help. This chapter describes the evaluation ofthe new approach on aconcept-

distancetask—determining word sense dominance.

In text, the occurrences of the senses of a word usually have askewed distribution (Gale

et al., 1992; Ng and Lee, 1996; Sanderson and van Rijsbergen,1999). For example, in a set of

randomly acquired sentences containing the worddam, it is probable that most of the instances

correspond to theBODY OF WATER sense as opposed to the rather infrequentUNIT OF LENGTH

or FEMALE PARENT OF AN ANIMAL senses. Further, the distribution varies in accordance

with the domain or topic of discussion. For example, theASSERTION OF ILLEGALITY sense

89
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of chargeis more frequent in the judicial domain, whereas in the domain of economics, the

EXPENSE/COST sense occurs more often. Formally, thedegree of dominance of aparticular

senseof a word (target word) in a given text (target text) may be de�ned as the proportion of

occurrences of the sense to the total occurrences of the target word. The sense with the highest

dominance in the target text is called thepredominant senseof the target word.

Determination of word sense dominance has many uses. An unsupervised system will ben-

e�t by backing off to the predominant sense in case of insuf�cient evidence (Hoste et al., 2001).

The dominance values may be used as prior probabilities for the different senses, obviating the

need for labeled training data in a sense disambiguation task. Natural language systems can

choose to ignore infrequent senses of words (McCarthy et al., 2004a) or consider only the most

dominant senses (McCarthy et al., 2004b). An unsupervised algorithm that discriminates in-

stances into different usages can use word sense dominance to assign labels to the different

clusters generated.

Word sense dominance may be determined by simple counting insense-tagged data. How-

ever, as mentioned earlier, dominance varies with domain and existing sense-tagged data is

largely insuf�cient to meet these needs. I propose four new measures to accurately determine

word sense dominance using raw text and a published thesaurus. Unlike the McCarthy et al.

(2004b) system, these measures can be used on relatively small target texts, without the need

for a similarly-sense-distributedauxiliary text. Further, given a new target text, the measures

are much faster and they can be employed not just for nouns butfor any part of speech. I

perform an extensive evaluation using arti�cially generated thesaurus-sense-tagged data.

5.2 Related work

McCarthy et al. (2004b) automatically determine domain-speci�c predominant senses of words

by using both a measure of distributional similarity (Lin, 1998b) and a measure of semantic

similarity (Jiang and Conrath, 1997). The system (Figure 5.1) automatically generates a distri-
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target text dominance
measure

dominance values

WordNet

thesaurus auxiliary corpusLin's

similarly sense distributed

Figure 5.1: The McCarthy et al. system. Its limitations include: (1) requirement of a large cor-

pus similarly sense distributed as the target text, (2) its reliance on WordNet-based semantic

distance measures which are good only for noun pairs, and (3)need to re-create Lin's distribu-

tional thesaurus for each new text with a different sense distribution.

butional thesaurus from a large corpus. The target text is used for this purpose, provided it is

large enough. Otherwise a large corpus with sense distribution similar to the target text (text

pertaining to the speci�ed domain) must be used.

The thesaurus has an entry for each word type, which lists a limited number of words

(neighbors) that are distributionally most similar to it. Since Lin's distributional measure

overestimates the distributional similarity of more-frequent word pairs (Mohammad and Hirst,

2005), the neighbors of a word corresponding to the predominant sense are distributionally

closer to it than those corresponding to any other sense. Foreach senses of a target wordt,

the distributional similarity scores oft with all it neighbors are summed using the semantic

similarity of s with the closest sense of the neighbor as weight. The sense that gets the highest

score is chosen as the predominant sense.

The McCarthy et al. system needs to re-train (create a new thesaurus) every time it is to

determine predominant senses in data from a different domain. This requires large amounts

of part-of-speech-tagged and chunked data from that domain. Further, the target text must be

large enough to learn a thesaurus from (Lin (1998b) used a 64-million-word corpus), or a large

auxiliary text with a sense distribution similar to the target text must be provided (McCarthy

et al. (2004b) separately used 90-, 9.1-, and 32.5-million-word corpora). As the McCarthy et al.
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target text auxiliary corpusWCCM

dominance values

dominance
measure

published thesaurus

Figure 5.2: My word-sense-dominance system. Notably: (1) it too uses an auxiliary corpus,

but it does not need to have a sense distribution similar to the target text, (2) the word–category

co-occurrence matrix is created just once, and (3) it relieson a published thesaurus and can be

applied to content words of any part of speech.

system relies on a WordNet-based measure of semantic distance as well, and as WordNet-based

measures are particularly poor at estimating semantic relatedness, the approach, in practice, is

applicable only to nouns and it is unable to exploit information from semantically related, albeit

semantically dissimilar, co-occurring words.

5.3 My word-sense-dominance system

I present a method (Figure 5.2) that, in contrast to the McCarthy et al. (2004b) system, deter-

mines word sense dominance even in relatively small amountsof target text (a few hundred

sentences); although it does use a corpus, it does not require asimilarly-sense-distributedcor-

pus. Nor does my system need any part-of-speech-tagged data(although that may improve

results further), and it does not need to generate a thesaurus or execute any such time-intensive

operation at run time. The approach stands on the hypothesisthat words surrounding the target

word are indicative of its intended sense, and that the dominance of a particular sense is pro-

portional to the relative strength of association between it and co-occurring words in the target

text. As shown in the previous two chapters, this strength ofassociation can be determined not

just for a noun sense and co-occurring words but also for any other part of speech. Therefore,

this sense dominance approach can be applied not just to nouns, but to any part of speech.
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5.3.1 Small target texts and a domain-free auxiliary corpus

As before, I use theMacquarie Thesaurus, with its 812 categories, as a coarse-grained sense

inventory. I create a word–category co-occurrence matrix (WCCM) and distributional pro�les

of these concepts or categories (DPCs) using the bootstrapping algorithm described earlier

in Section 3.3 and a subset of theBritish National Corpus (BNC)(Burnard, 2000); I use all

except every twelfth sentence of the BNC and keep the remaining for evaluation purposes.1

This corpus, used in addition to the target text, will be called theauxiliary corpus. If the target

text belongs to a particular domain, then the creation of theWCCM from an auxiliary text of

the same domain is expected to give better results than the use of a domain-free text. The target

text itself may be used as the auxiliary corpus if it is large enough. However, the key feature of

my approach is that the target text does not have to be large and even a domain-free auxiliary

corpus can help obtain accurate results.

5.3.2 Dominance measures

I examine each occurrence of the target word in a given untagged target text to determine

dominance of any of its senses. For each occurrencet0of a target wordt, let T0 be the set of

words (tokens) co-occurring within a predetermined windowaroundt0; let T be the union of all

suchT0and letX t be the set of all suchT0. (ThusjX t j is equal to the number of occurrences of

t, andjTj is equal to the total number of words (tokens) in the windows around occurrences of

t.) I propose four methods (Figure 5.3) to determine dominance (DI ;W;DI ;U ;DE;W; andDE;U )

and the underlying assumptions of each.

DI ;W is based on the assumption that the more dominant a particular sense is, the greater the

strength of its association with words that co-occur with it. For example, if most occurrences

of bankin the target text correspond toRIVER BANK, then the strength of association ofRIVER

1Note that even though we use a subset of the the BNC for evaluation, as described ahead in Section 5.5 ahead,
we create different test sets pertaining to different sensedistributions from this subset. Thus, we are not assuming
that the corpus used to create the WCCM and the test sets have the same sense distribution. In fact, they do not.



CHAPTER 5. DETERMINING WORD SENSE DOMINANCE 94

UnweightedWeighted

disambiguation
Implicit sense

Explicit sense
disambiguation

votingvoting

D I,W

DE,W

D I,U

E,UD

Figure 5.3: The four dominance methods.

BANK with all of bank's co-occurring words will be larger than the sum for any other sense.

DominanceDI ;W of a sense or category (c) of the target word (t) is:

DI ;W(t;c) =
å w2T A(w;c)

å c02senses(t) å w2T A(w;c0)
(5.1)

whereA is any one of the measures of association, such as pointwise mutual information,

described earlier in Section 2.1.1—cosine (Cos), Dice coef�cient (Dice), odds ratio (Odds),

pointwise mutual information (PMI), Yule's coef�cient (Yule), andf coef�cient. Metaphori-

cally, words that co-occur with the target word give a weighted vote to each of its senses. The

weight is proportional to the strength of association between the sense and the co-occurring

word. The dominance of a sense is the ratio of the total votes it gets to the sum of votes

received by all the senses.

A slightly different assumption is that the more dominant a particular sense is, the greater

the number of co-occurring words having highest strength ofassociation with that sense (as

opposed to any other). This leads to the following methodology. Each co-occurring word casts

an equal, unweighted vote. It votes for that sense (and no other) of the target word with which

it has the highest strength of association. The dominanceDI ;U of the sense is the ratio of the

votes it gets to the total votes cast for the word (number of co-occurring words).

DI ;U (t;c) =
jf w 2 T : Sns1(w;t) = cgj

jTj
(5.2)

Sns1(w;t) = argmax
c02senses(t)

A(w;c0) (5.3)

Observe that in order to determineDI ;W or DI ;U , we do not need to explicitly disambiguate

the senses of the target word's occurrences. I now describe alternative approaches that may be
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used for explicit sense disambiguation of the target word'soccurrences and thereby determine

sense dominance (the proportion of occurrences of that sense). DE;W relies on the hypothesis

that the intended sense of any occurrence of the target word has highest strength of association

with its co-occurring words.

DE;W(t;c) =
jf T02 X t : Sns2(T0; t) = cgj

jX t j

(5.4)

Sns2(T0; t) = argmax
c02senses(t)

å
w2T0

A(w;c0) (5.5)

Metaphorically, words that co-occur with the target word give a weighted vote to each of its

senses just as inDI ;W. However, votes from co-occurring words in an occurrence are summed

to determine the intended sense (sense with the most votes) of the target word. The process

is repeated for all occurrences that have the target word. Ifeach word that co-occurs with the

target word votes as described forDI ;U , then the following hypothesis forms the basis ofDE;U :

in a particular occurrence, the sense that gets the maximum votes from its neighbors is the

intended sense.

DE;U (t;c) =
jf T02 X t : Sns3(T0; t) = cgj

jX t j
(5.6)

Sns3(T0; t) = argmax
c02senses(t)

jf w 2 T0: Sns1(w;t) = c0gj (5.7)

In methodsDE;W andDE;U , the dominance of a sense is the proportion of occurrences ofthat

sense.

The degree of dominance provided by all four methods has the following properties: (i)

The dominance values are in the range 0 to 1—a score of 0 implies lowest possible dominance,

while a score of 1 means that the dominance is highest. (ii) The dominance values for all the

senses of a word sum to 1.
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5.4 Pseudo-thesaurus-sense-tagged data

To evaluate the four dominance methods we would ideally likesentences that have target words

annotated with senses from the thesaurus (the concept inventory). However, human annotation

is both expensive and time intensive. So I present an alternative approach of arti�cially generat-

ing thesaurus-sense-tagged data following the ideas of Leacock et al. (1998) and Mihalcea and

Moldovan (1999). Around 63,700 of the 98,000 word types in the Macquarie Thesaurusare

monosemous—listed under just one of the 812 categories. This means thaton average around

77 words per category are monosemous.Pseudo-thesaurus-sense-tagged (PTST) datafor

a non-monosemous target wordt (for example,brilliant ) used in a particular sense or cate-

gory c of the thesaurus (for example,INTELLIGENCE) may be generated as follows. Identify

monosemous words (for example,clever) belonging to the same category asc. Pick sentences

containing the monosemous words from an untagged auxiliarytext corpus.

Hermione had acleverplan.

In each such sentence, replace the monosemous word with the target wordt. In theory the

words in a thesaurus category are near-synonyms or at least strongly related words, making

the replacement of one by another acceptable. For the sentence above, we replacecleverwith

brilliant . This results in (arti�cial) sentences with the target wordused in a sense corresponding

to the desired category. Figure 5.4 summarizes the process.

Clearly, many of these sentences will not be linguisticallywell formed, but the non-monosemous

word used in a particular sense is likely to have similar co-occurring words as the monosemous

word of the same category.2 This justi�es the use of these pseudo-thesaurus-sense-tagged data

for the purpose of evaluation.

2Strong collocations are an exception to this, and their effect must be countered by considering larger window
sizes. Therefore, we do not use a window size of just one or twowords on either side of the target word, but rather
windows of� 5 words in our experiments.
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target word
brilliant

target sense

corpus
Hermione had a clever plan.

brilliant
clever
smart

published thesaurus

pseudo-thesaurus sense-tagged data

Hermione had a brilliant plan.

INTELLIGENCE

. . .

. . .

. . .

(ambiguous)
(monosemous)
(ambiguous)

. . .

. . .

. . .

INTELLIGENCE

. . .

. . .

. . .

/INTELLIGENCE

Figure 5.4: An overview of how pseudo-thesaurus-sense-tagged data was created.

I generated PTST test data for the head words in SENSEVAL-1 English lexical sample

space3 using theMacquarie Thesaurusand the held out subset of theBNC (every twelfth

sentence).

5.5 Evaluation

I evaluated the four dominance methods, like McCarthy et al.(2004b), through the accuracy

of a na�̈ve word sense disambiguation system that always gives out the predominant sense of

the target word. The predominant sense is determined by eachof the four dominance methods,

individually. The more accurately a measure determines thepredominant sense of the target

words, the higher will be the accuracy of the word sense disambiguation system. I used the

following setup to study the effect of sense distribution onperformance.

3SENSEVAL-1 head words have a wide range of possible senses, and availability of alternative sense-tagged
data may be exploited in the future.
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5.5.1 Setup

For each target word for which we have PTST data, the two most dominant senses are identi-

�ed, says1 ands2. If the number of sentences annotated withs1 ands2 is x andy, respectively,

wherex > y, then ally sentences ofs2 and the �rsty sentences ofs1 are placed in adata bin.

Eventually the bin contains an equal number of PTST sentences for the two most dominant

senses of each target word. Our data bin contained 17,446 sentences for 27 nouns, verbs, and

adjectives. We then generate different test data setsda from the bin, wherea takes values

0;0:1;0:2; : : :;1, such that the fraction of sentences annotated withs1 is a and those withs2

is 1� a. Thus the data sets have different dominance values even though they have the same

number of sentences. (Note that because of the way the datasets are compiled, each has half as

many sentences as there are in the bin.)

Each data setda is given as input to the na�̈ve word sense disambiguation system. If the

predominant sense is correctly identi�ed for all target words, then the system will achieve high-

est accuracy, whereas if it is falsely determined for all target words, then the system achieves

the lowest accuracy. The value ofa determines thisupper bound and lower bound. If a

is close to 0:5, then even if the system correctly identi�es the predominant sense, the naive

disambiguation system cannot achieve accuracies much higher than 50%. On the other hand, if

a is close to 0 or 1, then the system may achieve accuracies close to 100%. A disambiguation

system that randomly chooses one of the two possible senses for each occurrence of the target

word will act as the baseline. Note that no matter what the distribution of the two senses (a),

this system will get an accuracy of 50%.

5.5.2 Results

Highest accuracies achieved using the four dominance methods and the measures of association

that worked best with each are shown in Figure 5.5. The table below the �gure showsmean

distance below upper bound (MDUB)for all a values considered. Measures that perform
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Figure 5.5: Best results: four dominance methods

almost identically are grouped together and the MDUB valueslisted are averages. The window

size used was� 5 words around the target word. Each datasetda , which corresponds to a

different target text in Figure 2, was processed in less than1 second on a 1.3GHz machine

with 16GB memory. Weighted voting methods,DE;W andDI ;W, perform best with MDUBs

of just 0.02 and 0.03, respectively. Yule's coef�cient, odds ratio, and PMI give near-identical,

maximal accuracies for all four methods with a slightly greater divergence inDI ;W, where PMI

does best. Thef coef�cient performs best for unweighted methods. Dice and cosine do only

slightly better than the baseline. In general, results fromthe method–measure combinations

are symmetric acrossa = 0:5, as they should be.

Marked improvements in accuracy were achieved as a result ofbootstrapping the WCCM

(Figure 5.6). Most of the gain was provided by the �rst bootstrapping iteration itself whereas
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Figure 5.6: Best results: base vs. bootstrapped

further iterations did not improve accuracy (DE;W and DI ;W still had MDUBs of 0.02 and

0.03, respectively). This is not surprising because it is inthe �rst bootstrapping iteration that

word sense disambiguation is �rst done (not while creating the base WCCM). The marginal

improvements to the WCCM by subsequent iterations do not have as much effect. All boot-

strapped results reported in this thesis pertain to just oneiteration.4 The bootstrapped WCCM

is 72% smaller, and 5 times faster at processing the data sets, than the base WCCM.

4Even though the DPCs were conceived with the intention of estimating semantic distance, this work on word
sense dominance (Mohammad and Hirst, 2006a) preceded the experiments on the word-distance tasks described
in the last two chapters (Mohammad and Hirst, 2006b; Mohammad et al., 2007a). Once it was determined through
these sense dominance experiments that bootstrapping oncewas optimal, the same was done for all other experi-
ments described in this thesis, with occasional sanity checks.
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5.5.3 Discussion

Considering that this is a completely unsupervised approach, not only are the accuracies achieved

using the weighted methods well above the baseline, but alsoremarkably close to the upper

bound. This is especially true fora values close to 0 and 1. The lower accuracies fora near

0.5 are understandable as the amount of evidence towards both senses of the target word are

nearly equal.

Odds ratio, pointwise mutual information, and Yule's coef�cient perform almost equally

well for all methods. Since the number of times two words co-occur is usually much less than

the number of times they occur individually, pointwise mutual information tends to approxi-

mate the logarithm of odds ratio. Also, Yule's coef�cient isa derivative of odds ratio. Thus

all three measures will perform similarly in case the co-occurring words give an unweighted

vote for the most appropriate sense of the target as inDI ;U andDE;U . For the weighted voting

schemes,DI ;W andDE;W, the effect of scale change is slightly higher inDI ;W as the weighted

votes are summed over the complete text to determine dominance. InDE;W the small number

of weighted votes summed to determine the sense of the targetword may be the reason why

performances using pointwise mutual information, Yule's coef�cient, and odds ratio do not

differ markedly. Dice coef�cient and cosine gave below-baseline accuracies for a number of

sense distributions. This suggests that the normalization5 to take into account the frequency of

individual events inherent in the Dice and cosine measures may not be suitable for this task.

The accuracies of the dominance methods remain the same if the target text is partitioned as

per the target word, and each of the pieces is given individually to the disambiguation system.

The average number of sentences per target word in each dataset da is 323. Thus the results

shown above correspond to an average target text size of only323 sentences.

I repeated the experiments on the base WCCM after �ltering out (setting to 0) cells with

frequency less than 5 to investigate the effect on accuracies and gain in computation time (pro-

5If two events occur individually a large number of times, then they must occur together much more often to
get substantial association scores through PMI or odds ratio, as compared to cosine or the Dice coef�cient.
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portional to size of WCCM). There were no marked changes in accuracy but a 75% reduction

in size of the WCCM. Using a window equal to the complete sentence as opposed to� 5 words

on either side of the target resulted in a drop of accuracies.

5.6 Conclusions

I proposed four methods to determine the degree of dominanceof a sense of a word using

distributional pro�les of concepts. I used theMacquarie Thesaurusas a very coarse concept

inventory. I automatically generated sentences that have atarget word annotated with senses

from the published thesaurus, which were used to perform an extensive evaluation of the dom-

inance methods. The system achieved near-upper-bound results using all combinations of the

the weighted dominance methods (DI ;W andDE;W) and three different measures of association

(Odds, PMI, and Yule).

We cannot compare accuracies with McCarthy et al. (2004b) because use of a thesaurus

instead of WordNet means that knowledge of exactly how the thesaurus senses map to WordNet

is required. However, I showed that, unlike the McCarthy et al. system, this new system gives

accurate results without the need for a largesimilarly-sense-distributedtext or retraining. The

target texts used were much smaller (a few hundred sentences) than those needed for automatic

creation of a distributional thesaurus (a few million words). My system does not perform any

time-intensive operation, such as the creation of Lin's thesaurus, at run time; and it can be

applied to all parts of speech—not just nouns.



Chapter 6

Unsupervised Word Sense Disambiguation

6.1 Introduction

Word sense disambiguationor WSD is the task of determining the intended sense or meaning

of an ambiguoustarget word from its context. The context may be a few words on either side

of the target, the complete sentence, or it could include a few sentences around it as well.

Humans are skilled at word sense disambiguation. For example, even thoughweaknesscan

mean eitherAN INSTANCE OR PERIOD OF LACKING IN STRENGTH, FAULT, or A SPECIAL

FONDNESS, in the sentence below:

The Dark Lord has a weakness for ice cream.

we very quickly home into theSPECIAL FONDNESSsense, and often without conscious effort.

However, automatic word sense disambiguation has proved tobe much harder. There are

many reasons for this including the dif�culties of encodingcomprehensive world knowledge,

determining what the senses of a word must be, how coarse or �ne this sense-inventory must

be, and so on.

That said, determining the intended sense of a word is potentially useful in many natural

language tasks including machine translation and information retrieval. The more-accurate ap-

proaches for word sense disambiguation are supervised (Pradhan et al., 2007; Pedersen, 2001;

103
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Ng and Lee, 1996; McRoy, 1992). These systems rely on sense-annotated data to identify

co-occurring words that are indicative of the use of the target word in each of its senses.

However, only limited amounts of sense-annotated data exist and it is expensive to cre-

ate. Thus, a number unsupervised but knowledge-rich approaches have been proposed that

do not require sense-annotated data but make use of one or more of the lexical semantic net-

works in WordNet (Sussna, 1993; Banerjee and Pedersen, 2003; Yang and Powers, 2006b).

In this thesis, I have proposed an unsupervised approach to determine the strength of associ-

ation between a sense or concept and its co-occurring words—the distributional pro�le of a

concept (DPC)—relying simply on raw text and a published thesaurus. I now show how these

distributional pro�les of concepts can be used to create anunsupervisedna�̈ve Bayes word-

sense classi�er (determining both the prior probability and the likelihood in an unsupervised

manner). I will compare it with a baseline classi�er that also uses the strength of association

between the senses of the target and co-occurring words, butrelies only on contextual evi-

dence. Since I use pointwise mutual information (PMI) to measure the strength of association,

I will refer to the baseline classier as the PMI-based classi�er. Both the na�̈ve Bayes and the

PMI-based classi�ers participated in SemEval-07's1 English Lexical Sample Task (task #17).

Most other unsupervised word sense disambiguation (as opposed todiscrimination) systems,

such as those mentioned above, rely on a language-speci�c knowledge source such as Word-

Net and as a consequence are monolingual. The approach proposed here uses raw text and a

published thesaurus and it can be used both monolingually (as shown ahead in this chapter)

and cross-lingually (as I will show in the next chapter in theguise of a word-translation task).

Notably, when used cross-lingually the system can perform word sense disambiguation even in

a resource-poor language by combining its text with a published thesaurus from a resource-rich

one.

1SemEval-07 is a workshop of ACL-07, where systems compete invarious semantic analysis tasks on newly
compiled/created test data.
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6.2 The English Lexical Sample Task

The English Lexical Sample Task (Pradhan et al., 2007) was a traditional word sense disam-

biguation task wherein the intended (WordNet) sense of a target word was to be determined

from its context. The training and test data had 22,281 and 4,851 instances respectively for

100 target words (50 nouns and 50 verbs). They are in Senseval-2 data format. WordNet 2.1

was used as the sense inventory for most of the target words, but certain words were assigned

one or more senses from OntoNotes (Hovy et al., 2006). Many ofthe �ne-grained senses were

grouped into coarser ones. Here is an example training instance:

< instance id=“29:0@5@wsj12wsj1253@wsj@en@on” docsrc=“wsj”>

< answer instance=“29:0@5@wsj12wsj1253@wsj@en@on” senseid=“1” wn=“1,2,3”

wn-version=“2.1”>

< context>

This is just not so . The reality is that Bank �nances are rock solid . As of June

30 , 1989 – the day our past �scal year came to a close – only 4.1 %of the Bank

's portfolio was< head> affected< head> by arrears of over six months . This is

an enviably low level . Moreover , the Bank follows a prudent provisioning policy

and has set aside $ 800 million against possible loan losses .

< /context>

< /instance>

The target wordaffect is enclosed with the< head> and < /head> tags. From the answer

instance line (second line) we know that the above instance is annotated with sense identi�er 1

(senseid=“1”), and that the intended sense of the target is aconcept de�ned as the grouping of

three wordnet synsets (wn=“1,2,3”). Below is an example test instance:

< instance id=“15:0@35@browncfcf11@brown@en@on” docsrc=“brown”>

< context>

every orthodontist sees children who are embarrassed by their malformed teeth .
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Some such youngsters rarely smile , or they try to speak with the mouth closed

. In certain cases , as in Dick Stewart 's , a child 's personality is < head> af-

fected< head> . Yet from the dentist 's point of view , bad-�tting teeth should

be corrected for physical reasons . Bad alignment may resultin early loss of teeth

through a breakdown of the bony structure that supports their roots .

< /context>

< /instance>

Note that the test instance does not have an answer-instancetag.

6.3 Coping with sense-inventory mismatch

As described earlier, I create distributional pro�les of concepts or senses by �rst representing

the sense with a number of near-synonymous words. A thesaurus is a natural source of such

synonyms. Even though the approach can be ported to WordNet,2 there was no easy way of

representing OntoNotes senses with near-synonymous words. Therefore, I asked four native

speakers of English to map the WordNet and OntoNotes senses of the 100 target words to the

Macquarie Thesaurusand continue to use it as sense inventory. I also wanted to examine the

effect of using a very coarse sense inventory, such as the categories in a published thesaurus,

(only 812 in all) on word sense disambiguation.

The annotators were presented with a target word, its WordNet/OntoNotes senses, and

the Macquarie senses. WordNet senses were represented by synonyms, glosses, and example

usages. The OntoNotes senses were described through syntactic patterns and example usages

(provided by the task organizers). The Macquarie senses (categories) were described by the

category head (a representative word for the category) and �ve other words in the category.

Speci�cally, words in the same semicolon group as the targetwere chosen, as words within

2The synonyms within a synset, along with its one-hop neighbors and all its hyponyms, can represent that
sense.
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a semicolon group of a thesaurus tend to be more closely related than words across groups.

Annotators 1 and 2 labeled each WordNet/OntoNotes sense of the �rst 50 target words with one

or more appropriateMacquarie Thesauruscategories. Annotators 3 and 4 labeled the senses

of the other 50 words. I combined all four annotations into aWordNet–Macquarie mapping

�le by taking, for each target word, the union of categories chosen by the two annotators.

6.4 The DPC-based classi�ers

I will now describe the two classi�ers that took part in the English Lexical Sample Task. Both

use words in the context of the target word as features and both rely on a word–category co-

occurrence matrix to determine the evidence towards each sense of the target. The general

structure of the WCCM is shown below again for ease of reference.

c1 c2 : : : c j : : :

w1 m11 m12 : : : m1j : : :

w2 m21 m22 : : : m2j : : :
...

...
...

...
...

...

wi mi1 mi2 : : : mi j : : :
...

...
... : : :

...
...

It has words in one dimension and categories in the other. A particular cellmi j for wordwi and

sense or categoryc j contains the number of times they co-occur in text. As described earlier in

Section 3.3, I created the word–category co-occurrence matrix (WCCM) using a bootstrapping

algorithm and theBritish National Corpus (BNC)(Burnard, 2000).

6.4.1 Unsupervised nä�ve Bayes classi�er

The na�̈ve Bayes classi�er uses the following formula to determine the intended sensecnb:

cnb = argmax
c j2C

P(c j) Õ
wi2W

P(wi jc j ) (6.1)
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whereC is the set of possible senses of the target word (as listed in theMacquarie Thesaurus)

andW is the set of words that co-occur with the target (I used a window of � 5 words).3

Traditionally, prior probabilities of the senses (P(c j )) and the conditional probabilities in

the likelihood (Õwi2W P(wi jc j )) are determined by simple counts in sense-annotated data. I

approximated these probabilities using counts from the word–category co-occurrence matrix,

thereby obviating the need for manually-annotated data.

P(c j ) =
å i mi j

å i; j mi j
(6.2)

P(wi jc j) =
mi j

å i mi j
(6.3)

Here,mi j is the number of times the wordwi co-occurs with the categoryc j—as listed in the

word–category co-occurrence matrix (WCCM).

6.4.2 PMI-based classi�er

Pointwise mutual information (PMI) between a sense of the target word and a co-occurring

word is calculated using the following formula:

PMI(wi;c j ) = log
P(wi ;c j)

P(wi) � P(c j )
(6.4)

where P(wi ;c j ) =
mi j

å i; j mi j
(6.5)

and P(wi) =
å j mi j

å i; j mi j
(6.6)

Here,mi j is the count in the WCCM andP(c j ) is as in equation 6.2. For each sense of the target

word, the sum of the strength of association (PMI) between itand each of the co-occurring

words (in a window of� 5 words) is calculated. The sense with the highest sum is chosen as

3Note that while it is reasonable to �lter out non-content stopwords, it is not necessary in the case of the two
classi�ers described in this and the next subsection. Thesewords will have a small and more-or-less identical
co-occurrence strength of association with all concepts and so will not play a signi�cant role in determining the
intended sense. Of course, in certain cases the exact position of non-content words (for example, the target word
being immediately preceded byon) is indicative of the intended sense, but these classi�ers do not make use of
such exact positional information.
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the intended sense.

cpmi = argmax
c j2C

å
wi2W

PMI(wi ;c j) (6.7)

Note that even though the PMI-based classi�er uses prior probabilities of the categoriesP(c j)

(determined from the WCCM) to determine the strength of association ofc j with co-occurring

words, the classi�er does not bias (multiply) this contextual evidence withP(c j ). Since it uses

only contextual evidence, I call the PMI-based classi�er a baseline to the classi�er described

in the previous sub-section.

6.5 Evaluation

Both the na�̈ve Bayes classi�er and the PMI-based classi�erwere applied to the training data of

English Lexical Sample Task. For each instance, theMacquarie Thesauruscategoryc that best

captures the intended sense of the target was determined. The system then labels an instance

with all the WordNet senses that are mapped toc in the WordNet–Macquarie mapping �le

(described earlier in Section 4.1). Multiple answers for aninstance are given partial credit as

per SemEval's scoring program.

6.5.1 Results

Table 6.1 shows the performances of the two classi�ers on thetraining data. The system at-

tempted to label all instances and so we report accuracy values instead of precision and recall.

The na�̈ve Bayes classi�er performed markedly better in training than the PMI-based one and

so was applied to the test data. (Figure 6.1 depicts the results in a graph.) The table also lists

baseline results obtained when a system randomly guesses one of the possible senses for each

target word. Note that since this is a completely unsupervised system, it is not privy to the

dominant sense of the target words. We do not rely on the ranking of senses in WordNet as that

would be an implicit use of the sense-tagged SemCor corpus. Therefore, the most-frequent-

sense baseline does not apply.
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Table 6.1: English Lexical Sample Task: Results obtained using the PMI-based classi�er and

the na�̈ve Bayes classi�er on thetraining data.

WORDS BASELINE PMI-BASED NAÏVE BAYES

all 27.8 41.4 50.8

nouns only 25.6 43.4 53.6

verbs only 29.2 38.4 44.5

Figure 6.1: English Lexical Sample Task: Results obtained using the PMI-based classi�er and

the na�̈ve Bayes classi�er on thetraining data.
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Table 6.2 shows results obtained by the na�̈ve Bayes classi�er on the test data. It also shows

results obtained using just the prior probability and likelihood components of the na�̈ve Bayes

formula. Note that the prior probability alone gives much lower accuracies than likelihood for

nouns whereas in case of verbs, prior probability does better. Overall, for all target words, the

accuracy of the na�̈ve Bayes classi�er is better than that ofindividual components. (Figure 6.2

depicts the results in a graph.)

6.5.2 Discussion

The na�̈ve Bayes classi�er's accuracy is only about one percentage point lower than that of

the best unsupervised system taking part in the task (Pradhan et al., 2007). One reason that

it does better than the PMI-based one is that it takes into account prior probabilities of the

categories. Further, PMI is not very accurate when dealing with low frequencies (Manning

and Schütze, 1999). In case of verbs, lower combined accuracies compared to when using just

prior probabilities suggests that the bag-of-words type offeatures are not very useful. It is

expected that more syntactically oriented features will give better results. Using window sizes

of � 1; � 2; and� 10 on the training data resulted in lower accuracies (exact values not shown

here) than that obtained using a window of� 5 words. A smaller window size is probably

missing useful co-occurring words, whereas a larger windowsize is adding words that are not

indicative of the target's intended sense.

The use of a sense inventory (Macquarie Thesaurus) different from that used to label the

data (WordNet) clearly will have a negative impact on the results. The mapping from Word-

Net/OntoNotes to theMacquarie Thesaurusis likely to have some errors. Further, for 19

WordNet/OntoNotes senses, none of the annotators found a thesaurus category close enough

in meaning. This meant that the system had no way of correctlydisambiguating instances

with these senses. Also impacting accuracy is the signi�cantly �ne-grained nature of WordNet

compared to the thesaurus. For example, following are the three so-called coarse senses for the

nounpresidentin WordNet: (1) executive of�cer of a �rm or college, (2) the chief executive
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Table 6.2: English Lexical Sample Task: Results obtained using the na�̈ve Bayes classi�er on

thetest data.

WORDS BASELINE PRIOR L IKELIHOOD NAÏVE BAYES

all 27.8 37.4 49.4 52.1

nouns only 25.6 18.1 49.6 49.7

verbs only 29.2 58.9 49.1 54.7

Figure 6.2: English Lexical Sample Task: Results obtained using the na�̈ve Bayes classi�er on

thetest data.
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of a republic, and (3) President of the United States. The last two senses will fall into just one

category for most, if not all, thesauri.

6.6 Conclusions

In this chapter, I showed how distributional pro�les of concepts can be used in place of sense-

annotated data. I implemented an unsupervised na�̈ve Bayesword-sense classi�er estimating its

probabilities from a word–category co-occurrence matrix.It estimates the semantic distance

between the senses of the target word and its context. I compared it with a baseline PMI-

based classi�er. Both classi�ers took part in SemEval-07'sEnglish Lexical Sample task. On

the training data, the na�̈ve Bayes classi�er achieved markedly better results than the PMI-

based classi�er and so was applied to the respective test data. On both test and training data,

the classi�ers achieved accuracies well above the random baseline. Further, the na�̈ve Bayes

classi�er placed close to one percentage point from the bestunsupervised system.



Chapter 7

Machine Translation1

7.1 Introduction

Cross-lingual distributional pro�les of concepts (introduced in Chapter 4), are useful not only

to solve natural language problems in a resource-poor language using knowledge sources from

a resource-rich one (as shown in Chapter 4), but are also useful in tasks that inherently involve

two or more languages. This is because the cross-lingual DPCs provide a seamless transition

from words in one language to concepts in another. In this chapter, I will explore the use of

cross-lingual DPCs in one such task—machine translation (MT).

Machine translation is the task of automatically translating text in one language (source)

into another (target). In other words, given a sentence in the source language, machine trans-

lation is the task of constructing/determining that sentence in the target language which is

closest in meaning to it. For example, the following is a goodinput–output pair of a machine

translation system:

Source sentence (in English):You know a person by the company they keep.

Target sentence (in German):Das Wesen eines Menschen erkennt man an der

1This chapter describes work done in collaboration with Philip Resnik, University of Maryland. Philip played
a crucial role in identifying the potential of distributional pro�les of concepts in a cross-lingual framework. He
provided access to Chinese text used in experiments, as well. I am grateful for the insights and helpful discussions.
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Gesellschaft, mitder er sich umgibt.

The need for accurate machine translation is simple and compelling: it allows understanding

of foreign-language text. Byforeign language, I mean a language that the reader does not

understand. Machine translation is vital towards eliminating the language divide and allowing

speakers of all languages easy access to information.

Given its signi�cance, it is not surprising that machine translation has enjoyed the attention

of a large number of researchers, giving rise to a rich diversity of approaches and ideas. In

the last �fteen years, statistical machine translation hasevolved as the dominant methodology.

To learn more about machine translation and popular approaches, see the machine translation

chapter in “Foundations of Statistical Natural Language Processing” (Manning and Schütze,

1999) and the “Statistical Machine Translation” textbook (Koehn, 2007). See Dorr et al. (1999)

for a survey of approaches in machine translation and Lopez (2007) and Knight and Marcu

(2005) for recent surveys of statistical machine translation.

Statistical machine translation involves learning from example translations inherent in par-

allel corpora—corpora that are translations of each other.However, parallel corpora are a

limited resource. Like sense-annotated data, not many parallel corpora exist, and none for

most language pairs. In this chapter, I show how cross-lingual distributional pro�les of con-

cepts can be useful in machine translation. Notably, my approach does not require any paral-

lel corpora or sense-annotated data. An implementation of such a system participated in the

Multilingual Chinese–English Lexical Sample Task and placed �rst among the unsupervised

systems. It should be noted that the experiments presented here are only an initial exploration

of the abilities of cross-lingual DPCs in machine translation and multilingual tasks in gen-

eral. Experiments on a full-scale machine translation system are planned for the near future in

collaboration with Philip Resnik (see Section 8.5.1 on future work).
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7.2 The Multilingual Chinese–English Lexical Sample Task

The objective of the Multilingual Chinese–English LexicalSample Task (Jin et al., 2007) was

to select from a given list a suitable English translation ofa Chinese target word in context. The

training and test data had 2686 and 935 instances respectively for 40 target words (19 nouns and

21 verbs). The instances were taken from the January, February, and March 2000 editions of

thePeople's Daily—a popular Chinese newspaper. The organizers used theChinese Semantic

Dictionary (CSD), developed by the Institute of Computational Linguistics,Peking University,

both as a sense inventory and as a bilingual lexicon (to extract a suitable English translation

of the target word once the intended Chinese sense was determined). A CSD-based system

can use the bilingual lexicon to determine which senses of the Chinese target word correspond

to its given English translations. The system then analyzesan occurrence of the target word

to determine which of these Chinese senses is intended. The instance is then labeled with the

corresponding English translation.

However, one of the motivations for this task was that traditional word sense disambigua-

tion tasks force all competing systems to work with the same sense-inventory. By presenting

the sense disambiguation task in the guise of a word-translation task, such a restriction is no

longer obligatory. In that spirit, my system does not use theCSD, but rather the EnglishMac-

quarie Thesaurus. In order to determine the English translations of Chinese words in context,

our system �rst determines the intended cross-lingual candidate sense. Recall from Section

4.2 that cross-lingual candidate senses of a target word in one languageL1 are those cate-

gories in the thesaurus of another languageL2 that are reachable by looking up the target in an

L1–L2 bilingual lexicon and the translations in theL2 thesaurus. See Figure 7.2 for Chinese–

English examples. Also recall that they are called “candidate” senses because some of the

senses of anL2 word might not really be senses of theL1 word—for example,CELEBRITY,

PRACTICAL LESSON, andSTATE OF ATMOSPHEREin the example of the �gure. Using the

English thesaurus instead of CSD also means that the system requires a mapping of the given

English translations to the English thesaurus categories (rather than a mapping from the En-
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Figure 7.1: The cross-lingual candidate senses of example Chinese words. In red are concepts

not really senses of the Chinese words, but simply artifactsof the translation step.

glish translations to Chinese senses—as provided by CSD). Anative speaker of Chinese and

I mapped the English translations of the Chinese target words to appropriateMacquarie The-

sauruscategories—referred to as theEnglish translations–Macquarie category mapping.

We used three examples (from the training data) per English translation for this purpose. Once

the intended sense (thesaurus category) of the Chinese wordis determined, the system uses

this English category–English word mapping to assign the appropriate English translation to

the Chinese target word.

7.3 The cross-lingual DPC–based classi�ers

In the subsections below, I will describe the two word sense classi�ers that took part in the

Multilingual Chinese–English Lexical Sample Task. Both use Chinese words in the context

of the Chinese target word as features to determine its intended cross-lingual sense (Mac-

quarie Thesauruscategory). Both classi�ers rely on the cross-lingual (Chinese–English) word–

category co-occurrence matrix to determine the evidence towards each English cross-lingual

candidate sense of the target. In chapter 4, I described how German text can be combined

with an English thesaurus using a German–English bilinguallexicon to create German–English

word–category co-occurrence matrix. Using the same algorithm, I now create a cross-lingual

(Chinese–English) word–category co-occurrence matrix with Chinese word typeswch as one
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Figure 7.2: Chinese words havingCELESTIAL BODY as cross-lingual candidate senses.

dimension and English thesaurus conceptscen as another.

cen
1 cen

2 : : : cen
j : : :

wch
1 m11 m12 : : : m1j : : :

wch
2 m21 m22 : : : m2j : : :
...

...
...

...
...

...

wch
i mi1 mi2 : : : mi j : : :
...

...
... : : :

...
...

The matrix is populated with co-occurrence counts from a large Chinese corpus; we used

a collection of LDC-distributed corpora2—Chinese Treebank English Parallel Corpus, FBIS

data, Xinhua Chinese–English Parallel News Text Version 1.0 beta 2, Chinese English News

Magazine Parallel Text, Chinese News Translation Text Part1, andHong Kong Parallel Text.

A particular cellmi j , corresponding to wordwch
i and conceptcen

j , is populated with the number

of times the Chinese wordwch
i co-occurs with any Chinese word havingcen

j as one of itscross-

lingual candidate senses. For example, the cell for (SPACE) andCELESTIAL BODY will

have the sum of the number of times co-occurs with , , , , , and so on

(see Figure 7.2). As before, we used theMacquarie Thesaurus(Bernard, 1986) (about 98,000

words). The possible Chinese translations of an English word were taken from the Chinese–

English Translation Lexicon version 3.0 (Huang and Graff, 2002) (about 54,000 entries).

As described earlier too, this base word–category co-occurrence matrix (base WCCM),

created after a �rst pass of the corpus, captures strong associations between a category (con-

cept) and co-occurring words. For example, even though we increment counts for both –

2http://www.ldc.upenn.edu
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CELESTIAL BODY and –CELEBRITY for a particular instance where co-occurs with

, will co-occur with a number of words such as , , and that each have

the sense ofCELESTIAL BODY in common (see Figure 7.2), whereas all their other senses are

likely different and distributed across the set of concepts. Therefore, the co-occurrence count,

and thereby the strength of association, of andCELESTIAL BODY will be relatively higher

than that of andCELEBRITY.

Again as described for the German–English case in Chapter 4,a second pass of the corpus

is made to disambiguate the (Chinese) words in it. A new bootstrapped WCCM is created by

populating each cellmi j , corresponding to wordwch
i and conceptcen

j , with the number of times

the Chinese wordwch
i co-occurs with any Chinese wordused in cross-lingual sense cen

j .

7.3.1 Cross-lingual nä�ve Bayes classi�er

The cross-lingual na�̈ve Bayes classi�er has the followingformula to determine the intended

English sensecen
nb of the Chinese target wordwen

target:

cen
nb = argmax

cen
j 2Cen

P(cen
j ) Õ

wch
i 2Wch

P(wch
i jcen

j ) (7.1)

whereCen is the set of possible senses (as listed in theMacquarie Thesaurus) andWch is the

set of Chinese words that co-occur with the targetwen
target (we used a window of� 5 words).

A direct approach to determine these probabilities, prior probabilities of the senses (P(cen
j ))

and the conditional probabilities in the likelihood (Õwch
i 2Wch P(wch

i jcen
j )), require word-aligned

parallel corpora and sense-annotated corpora. Both are expensive and hard-to-�nd resources. I

approximate these probabilities using counts from the cross-lingual word–category co-occurrence

matrix, thereby obviating the need for manually-annotateddata.

P(cen
j ) =

å i mi j

å i; j mi j
(7.2)

P(wch
i jcen

j ) =
mi j

å i mi j
(7.3)
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Here,mi j is the number of times the Chinese wordwch
i co-occurs with the English category

cen
j —as listed in the Chinese–English word–category co-occurrence matrix.

7.3.2 PMI-based classi�er

Pointwise mutual information (PMI) between a cross-lingual candidate sense of a Chinese

target word and a co-occurring Chinese word is calculated using the following formula:

PMI(wch
i ;cen

j ) = log
P(wch

i ;cen
j )

P(wch
i ) � P(cen

j )
(7.4)

where P(wch
i ;cen

j ) =
mi j

å i; j mi j
(7.5)

and P(wch
i ) =

å j mi j

å i; j mi j
(7.6)

Here,mi j is the count in the WCCM andP(c j) is as in equation 7.2. For each cross-lingual

candidate sense of the Chinese target, the sum of the strength of association (PMI) between

it and each of the co-occurring Chinese words (in a window of� 5 words) is calculated. The

sense with the highest sum is chosen as the intended sense.

cen
pmi = argmax

cen
j 2Cen

å
wch

i 2Wch

PMI(wch
i ;cen

j ) (7.7)

Note that even though the PMI-based classi�er uses prior probabilities of the categoriesP(c j)

(determined from the cross-lingual WCCM) to determine the strength of association ofc j with

co-occurring words, the classi�er does not bias (multiply)this contextual evidence withP(c j).

Since it uses only contextual evidence, I call the PMI-basedclassi�er a baseline to the classi�er

described in the previous sub-section.

7.4 Evaluation

Both the na�̈ve Bayes classi�er and the PMI-based classi�erwere applied to the SemEval train-

ing data. For each instance, the Macquarie category, saycen, that best captures the intended
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Table 7.1: Multilingual Chinese–English Lexical Sample Task: Results obtained using the

PMI-based classi�er on the training data and the na�̈ve Bayes classi�er on thetraining data.

BASELINE PMI- BASED NAÏVE BAYES

WORDS micro macro micro macro micro macro

all 33.1 38.3 33.9 40.0 38.5 44.7

nouns only 41.9 43.5 43.6 45.0 49.4 50.5

verbs only 28.0 34.1 28.0 35.6 31.9 39.6

sense of the target Chinese wordwch
i was determined. The system then labels an instance with

all the English translations that are mapped toc in the English translations–Macquarie category

mapping (described earlier in Section 7.2). Multiple answers for an instance are given partial

credit as per SemEval's scoring program. However, the multilingual Chinese–English lexical

sample task evaluation script did not give partial credit incase of multiple answers, and so an

answer is chosen at random from the tied alternatives.

7.4.1 Results

Table 7.1 shows accuracies of the two classi�ers.Macro averageis the ratio of the number of

instances correctly disambiguated to the total, whereasmicro averageis the average of the ac-

curacies achieved on each target word. As in the English Lexical Sample Task, both classi�ers,

especially the na�̈ve Bayes classi�er, perform well above the baseline classi�er which chooses

one of the possible English translations at random. (Figure7.3 depicts the results in a graph.)

Since the na�̈ve Bayes classi�er performed markedly betterthan the PMI-based one too, it was

applied to the test data.

Table 7.2 shows results obtained on the test data. Again the results are well above baseline.

The table also presents results obtained using the individual components of the na�̈ve Bayes

classi�er, likelihood and prior probability. In general, prior probabilities are less useful than
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Figure 7.3: Multilingual Chinese–English Lexical Sample Task: Results obtained using the

PMI-based classi�er on the training data and the na�̈ve Bayes classi�er on thetraining data.

the likelihood, so much so that they are negatively impacting the overall performance in some

cases. (Figure 7.4 depicts the results in a graph.)

7.4.2 Discussion

Our na�̈ve Bayes classi�er was a clear �rst among the two unsupervised systems taking part in

the task (Jin et al., 2007). The use of a sense inventory different from that used to label the data

(Macquarie as opposed to CSD) again will have a negative impact on the results as the mapping

may have a few errors. The annotators believed none of the given Macquarie categories could

be mapped to two Chinese Semantic Dictionary senses. This meant that our system had no way

of correctly disambiguating instances with these senses.

There were also a number of cases where more than one CSD senseof a word was mapped

to the same Macquarie category. This occurred for two reasons: First, the categories of the

Macquarie Thesaurusact as very coarse senses. Second, for certain target words,the two CSD

senses may be different in terms of their syntactic behavior, yet semantically very close (for

example, theBE SHOCKED andSHOCKED senses of ). This many-to-one mapping meant

that for a number of instances more than one English translation was chosen. Since the task
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Table 7.2: Multilingual Chinese–English Lexical Sample Task: Results obtained using the

PMI-based classi�er on the training data and the na�̈ve Bayes classi�er ontest data.

BASELINE PRIOR L IKELIHOOD NAÏVE BAYES

WORDS micro macro micro macro micro macro micro macro

all 33.1 38.3 35.4 41.7 38.8 44.6 37.5 43.1

nouns only 41.9 43.5 45.3 47.1 48.1 50.8 50.0 51.6

verbs only 28.0 34.1 29.1 36.8 32.9 39.0 29.6 35.5

Figure 7.4: Multilingual Chinese–English Lexical Sample Task: Results obtained using the

PMI-based classi�er on the training data and the na�̈ve Bayes classi�er ontest data.
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required us to provide exactly one answer (and there was no partial credit in case of multiple

answers), a category was chosen at random.

7.5 Conclusions

In this chapter, I showed how cross–lingual distributionalpro�les of concepts can be useful

in tasks that inherently involve two or more languages. Speci�cally, I show that they are use-

ful in machine translation. I implemented an unsupervised na�̈ve Bayes word-sense classi�er

that uses cross-lingual (Chinese–English) distributional pro�les of concepts to determine the

intended English sense of a given Chinese word from its context. Notably, I do so without

using any manually sense-annotated data or parallel corpora. Once the intended English sense

was determined, the exact English translation was determined from a manually mapped �le.

Automated approaches for this step can also be used.

I compared the cross-lingual na�̈ve Bayes classi�er with a baseline cross-lingual PMI-based

classi�er. Both classi�ers took part in SemEval-07's Multilingual Chinese–English Lexical

Sample Task. Just as in the English Lexical Sample Task (described in the previous chapter),

on the training data, the na�̈ve Bayes classi�er achieved markedly better results than the PMI-

based classi�er and so was applied to the test data. On both test and training data, the classi�ers

achieved accuracies well above the random baseline. Further, the cross-lingual na�̈ve Bayes

classi�er placed �rst among the unsupervised systems.

Applying cross-lingual DPCs to other multilingual tasks such as multilingual document

clustering, summarization, and information retrieval is an especially exciting aspect of future

work (see Section 8.5 for more details).



Chapter 8

Conclusions

8.1 Distributional concept-distance

In this thesis, I have proposed a new hybrid approach that combines a published thesaurus with

text to measure semantic distance. The central argument is that the semantic distance between

two concepts can be accurately determined by calculating the distance between their distribu-

tional pro�les. The distributional pro�le of a concept is the strength of association between

it and each of the words that co-occur with it. The argument issimilar to the distributional

hypothesis—“you know a word by the company it keeps”. However, there the targets are

words whereas here the targets are word senses or concepts.

Determining distributional pro�les of concepts is more dif�cult than determining distribu-

tional pro�les of words, which require only simple word–word co-occurrence counts. A direct

approach for estimating concept–word co-occurrence counts (needed to create DPCs) requires

sense-annotated data, which is rare and expensive to create. I proposed a way to estimate these

counts, and thereby the DPCs, using a bootstrapping algorithm. Notably, I do so without the

use of any sense-annotated data. I use the categories in a published thesaurus (812 in all) as

concepts or coarse senses. This newly proposed approach �lls a void created by the many

limitations of existing approaches described next.
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8.2 Problems with earlier approaches

One of the contributions of this thesis was to do a comparative study of previous distance

approaches and to �esh out the problems associated with them. The various WordNet-based

measures have been widely studied (Budanitsky and Hirst, 2006; Patwardhan et al., 2003),

and even though individual distributional measures are being used more and more, the study of

distributional measures on the whole has received much lessattention. In Chapter 2, I presented

a detailed analysis of distributional measures and a qualitative comparison with WordNet-based

measures. I summarize the key limitations of both WordNet-based and distributional word-

distance measures here.

The best WordNet-based measures of concept-distance rely on an extensive hierarchy of

hyponymy relationships for nouns and are therefore only good at estimating semantic similar-

ity between nouns. They are particularly poor at estimatingsemantic relatedness between all

other part-of-speech pairs and cross-part-of-speech pairs such as a noun–verb and adjective–

noun. Further, WordNet, with more than 117,000 synsets, is avery �ne-grained sense inventory

(Agirre and Lopez de Lacalle Lekuona (2003) and citations therein). This itself leads to sev-

eral problems: (1) Creating such an extensively connected network of concepts for another

language is an arduous task. Even if there are WordNet projects in the pipeline for a hand-

ful of languages, most languages will have to make do withoutone. (2) Fine-grained senses

may have the effect of erroneously splitting the semantic relatedness/similarity score. (3) It

is computationally expensive and memory-intensive to pre-compute all sense–sense distance

values—a pre-requisite for use in real-time applications.

Distributional measures of word-distance con�ate all possible senses of a word, giving

a dominance-based average of the distances between the senses of the target words. There-

fore distributional word-distance measures perform poorly when compared to concept-distance

measures, because in most natural language tasks, when given a target word pair, we usually

need the distance between their closest senses. Distributional measures of word-distance, like

the WordNet-based measures, also require the computation of large distance matrices (V � V),
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whereV is the size of the vocabulary (usually at least 100,000). And�nally, both distribu-

tional word-distance and WordNet-based concept-distancemeasures have largely been used

monolingually. They do not lend themselves easily to tasks that involve multiple languages.

8.3 Features of the new approach

In contrast, distributional measures of concept-distancedetermine pro�les of concepts (word

senses) and do not con�ate the distances between the many senses of a word. I have shown

that they are markedly more accurate than distributional word-distance measures through ex-

periments on a number of natural language tasks: ranking word pairs in order of their semantic

distance, correcting real-word spelling errors, and solving word-choice problems. The newly

proposed approach can accurately measure both semantic relatedness and semantic similarity.

Further, it can do so for all part-of-speech pairs and not just for noun pairs (as in case of the

best WordNet-based measures). When measuring semantic similarity between English noun

pairs, the distributional concept-distance measures perform competitively, but the Jiang Con-

rath measure which uses WordNet does better. When measuringsemantic similarity between

German noun pairs, the cross-lingual distributional concept-distance measures perform better

than the best monolingual GermaNet-based measures, including the Jiang Conrath measure.

I use theMacquarie Thesauruscategories (812 in all) as concepts. Drastic as this may

seem, I have shown through experiments in a number of naturallanguage tasks that accurate

results can be obtained even with such a coarse sense-inventory. The use of thesaurus categories

as concepts means that to pre-compute all distance values wenow require a concept–concept

distance matrix of size only 812� 812—much smaller than (and about 0.01% the size of) the

matrix required by traditional semantic and distributional measures. This also means that the

distance between two concepts (categories) is calculated from the occurrences ofall the words

listed under those categories and so the approach largely avoids the data-sparseness problems of

distributional word-distance measures (poor word–word distance estimation due to insuf�cient
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number of occurrences of the target word(s) in a corpus).

As mentioned earlier, distributional measures of concept-distance combine text and a pub-

lished thesaurus. I have shown how this can be done in a monolingual framework, with both

text and thesaurus belonging to the same language, and in a cross-lingual framework, where

they belong to different languages. Cross-lingual distributional pro�les created in the latter

case provide a seamless transition from words in one language to concepts in another. This

allows the use of these cross-lingual DPCs to attempt tasks in a resource-poor language using

a knowledge source from a resource-rich one. It also allows us to attempt tasks that inher-

ently involve two or more languages, such as machine translation and multilingual information

retrieval.

8.4 How the new approach helps

A large number of natural language tasks are essentially semantic-distance tasks (see Section

1.1.3 for more discussion). Thus, potentially, they can allbene�t from the new distributional

concept-distance approach. Certain kinds of tasks are especially well suited to take advantage

of the unique features of this new approach and I describe them below along with speci�c

conclusions from my experiments.

8.4.1 Moving from pro�les of words to pro�les of concepts

Firth's (1957) distributional hypothesis states that words occurring in similar contexts tend

to be semantically similar. Distributional word-distancemeasures estimate how similar two

words are by quantifying the similarity between their pro�les. However, most words have

more than one meaning and semantic similarity of two words can vary greatly depending on

their intended senses. In Chapter 3, I showed that with distributional pro�les of concepts, the

same distributional measures can now be used to estimate semantic distance between word

senses or concepts. Further, I showed that the newly proposed concept-distance measures are
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more in line with human notions of semantic distance and attain markedly higher accuracies in

(1) ranking word pairs as per their semantic distance and in (2) correcting real-word spelling

errors.

8.4.2 Obviating the need for sense-annotated data

A large number of problems, such as word sense disambiguation (WSD), are traditionally

approached with sense-annotated data. Other problems, such as determining word sense domi-

nance, become trivial given such data. However, manually annotated data is expensive to create

and not much exists—a problem further exacerbated by the practical need for domain-speci�c

data for many different domains. The distributional pro�les of concepts proposed in this thesis

are created in an unsupervised manner and can be used in placeof sense-annotated data.

In Chapter 5, I proposed methods to determine the degree of dominance of a sense of a

word using distributional pro�les of concepts. They achieved near-upper-bound results even

when the target text was relatively small (a few hundred sentences as opposed to thousands

used by other approaches). Unlike the McCarthy (2006) system, I showed that these new

methods do not require largesimilarly-sense-distributedtext or retraining. The methods do

not perform any time-intensive operation, such as the creation of Lin's thesaurus, at run time;

and they can be applied to all parts of speech—not just nouns.In the process of evaluation,

I automatically generated sentences that have a target wordannotated with senses from the

published thesaurus. One of the future directions is to automatically generate sense-annotated

data using various sense-inventories, and in different domains.

In Chapter 6, I described an unsupervised na�̈ve Bayes word-sense classi�er that estimates

its prior and likelihood probabilities from the word–category co-occurrence matrix. The clas-

si�er obtained close to one percentage point from the top unsupervised system that took part

in SemEval-07's English Lexical Sample task.
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8.4.3 Overcoming the resource-bottleneck

In a majority of languages, estimating semantic distance, and indeed many other natural lan-

guage problems, is hindered by a lack of manually created knowledge sources such as WordNet

for English and GermaNet for German. In Chapter 4, I presented the idea of estimating seman-

tic distance in one, possibly resource-poor, language using a knowledge source from another,

possibly resource-rich, language. (This is work done in collaboration with Torsten Zesch and

Iryna Gurevych of the Darmstadt University of Technology.)I did so by creating cross-lingual

distributional pro�les of concepts, using a bilingual lexicon and a bootstrapping algorithm,

but without the use of any sense-annotated data or word-aligned corpora. The cross-lingual

measures of semantic distance were evaluated on two tasks: (1) estimating semantic distance

between words and ranking the word pairs according to semantic distance, and (2) solving

Reader's Digest̀Word Power' problems. “Gold standard” evaluation data forthese tasks were

compiled by Zesch and Gurevych. We compared results with those obtained by conventional

state-of-the-art monolingual approaches to determine theamount of loss-in-accuracy due to

the translation step. Apart from traditional information-content measures proposed by Resnik

(1995) and Jiang and Conrath (1997), we also compared the cross-lingual distributional mea-

sures with Lesk-like measures proposed speci�cally for GermaNet (Gurevych, 2005).

The thesaurus-based cross-lingual approach gave much better results than monolingual ap-

proaches that do not use a knowledge source. Further, in bothtasks and all the experiments,

the cross-lingual measures performed as well if not slightly better than the GermaNet-based

monolingual approaches. This shows that the proposed cross-lingual approach, while allowing

the use of a superior knowledge source from another language, is able to keep at a minimum

losses due to the translation step. We show that in languagesthat lack a knowledge source,

large gains in accuracy can be obtained by using the proposedcross-lingual approach. Further,

even if the language has a semi-developed knowledge source,better results can be obtained by

using the cross-lingual approach and a superior knowledge source from another language.
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8.4.4 Crossing the language barrier

Cross-lingual distributional pro�les of concepts (introduced in Chapter 4), are useful not only

to solve natural language problems in a resource-poor language with knowledge sources from

a resource-rich one (as shown in Chapter 4), but are also useful in tasks that inherently involve

two or more languages. In Chapter 7, I showed how cross–lingual distributional pro�les of con-

cepts can be useful in machine translation. I implemented anunsupervised na�̈ve Bayes word-

sense classi�er that uses cross-lingual (Chinese–English) distributional pro�les of concepts to

determine the intended English sense of a given Chinese wordfrom its context. Notably, I did

so without using any manually sense-annotated data or parallel corpora. The classi�er placed

�rst among the unsupervised systems that took part in SemEval-07's Multilingual Chinese–

English Lexical Sample Task.

Applying cross-lingual DPCs to other multilingual tasks such as multilingual document

clustering, summarization, and information retrieval is an especially exciting aspect of future

work (see sub-sections 8.5.4, 8.5.2, and 8.5.3 ahead).

8.5 Future directions

Future work on this topic can be divided into two kinds: (1) improving the estimation of

DPCs by using better algorithms, task-suited sense-inventories, and syntactic information; and

(2) using the DPC-based approach in a variety of other natural language tasks that can take

advantage of its features.

I have used categories in the thesaurus as concepts. However, most published thesauri di-

vide categories into paragraphs, and paragraphs into semicolon groups. On certain tasks it

may be more bene�cial to use these as less-coarse sense-inventories. Also, I have used all

words in a category, irrespective of their part of speech. Itwill be interesting to determine the

role of different parts of speech in different tasks. It is also worth comparing performance of

thesaurus-based DPCs with those created from other knowledge sources, especially Wikipedia.
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Wikipedia is appealing, not just because it is created by thecommunity (75,000 active contrib-

utors) and so in many ways re�ects language and concepts as they are used and understood,

but also because of its very high coverage (5.3 million articles in 100 languages). Of course,

it is challenging to organize Wikipedia concepts as in a published thesaurus (see Zesch et al.

(2007a) and Milne et al. (2006) for some exploration in this area); the DPC-based approach

of using a thesaurus to estimate semantic distance can be used to evaluate different thesaurus-

representations of Wikipedia.

The distributional pro�les of concepts I used were calculated from simple word–concept

co-occurrences without incorporating any syntactic information. Yet they have achieved com-

petitive results in various natural language tasks. The next step will be to use only those co-

occurring words that stand in certain syntactic relations,such as verb–object and subject–verb,

with each other and determine if that leads to signi�cant improvements in accuracies of DPC-

based applications.

Finally, the ideas presented in this thesis can be applied toa number of natural language

tasks. Below are some of the applications that I am especially interested in.

8.5.1 Machine translation

The experiments described in Chapter 7 constitute only the �rst stage of using cross-lingual

DPCs for machine translation (MT). I intend to determine (domain-speci�c) probabilities of

possible English translations of Chinese words and use themas prior probabilities in a full-

�edged MT system. The next step will be to do the same for phrases. I am also interested in

determining how useful cross-lingual DPCs are in choosing the correct target hypothesis from

the topk that an MT system picks. It is worth determining whether combining a traditional

word-based language model with a concept-based language model will improve results.
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8.5.2 Multilingual multi-document summarization

Consider the task of summarizing several news articles about the same event that are written

in several different languages. Conventional approaches may, at best, �nd concepts pertinent

only within the scope of each document and include them in thesummary. Further, identifying

sentences that convey more or less the same information across articles in different languages

is a problem. Using my algorithm we can create different DPCscorresponding to words in each

language and concepts as perone commoninventory of senses. Therefore, we can determine

concepts that are deemed signi�cant by the document set as a whole and also identify sentences

that convey more or less the same information to create a morepertinent and non-redundant

summary.

8.5.3 Multilingual information retrieval

State-of-the-art models in information retrieval (IR) have traditionally made certain indepen-

dence assumptions so that their models remain relatively simple. They assume that different

word-types in the document and query are independent. However, if the query has a term

scalpel, then we would want the system to score a document higher if ithassurgeonas op-

posed to another completely unrelated word. Recently, there has been some encouraging work

incorporating such dependencies and semantic relations into IR systems (Cao et al., 2005; Gao

et al., 2004). However these methods are computationally expensive. As my approach uses

a very coarse sense-inventory (only 812 concepts), it can easily pre-compute semantic relat-

edness values between all concepts pairs and use it to estimate term dependencies. Even so,

I believe the crucial bene�t of my approach will be in cross-lingual IR, where the documents

and queries belong to different languages; using cross-lingual DPCs not only can we place all

queries and documents in the same concept-space (as described in the previous section), we

can also incorporate term dependencies between terms that belong to different languages.
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8.5.4 Multilingual document clustering

A large number of tasks such as estimating semantic distanceand document clustering involve

vector representations of linguistic units such as words, concepts, documents and so on in

word-space. This has largely worked out nicely; however, incertain tasks the approach can

fall on its face, a case in point being multilingual documentclustering. If words in a docu-

ment are used as features, then no two documents from different languages will be grouped

together, even though they may have similar content. Part ofmy future work is to represent

documents in the same concept-space by using cross-lingualdistributional pro�les of con-

cepts. For example, if the document pool has articles in English, Spanish, and Russian, then

I can use English–English, Spanish–English, and Russian–English distributional pro�les to

represent each document in an English thesaurus's concept-space. Then a standard clustering

algorithm can be used to group them according to content.

As part of a monolingual baseline for this, I have already conducted some experiments in

collaboration with Yaroslav Riabinin1. We used theReuters-21578corpus for our experiments.

It had 21,578 documents; 3,746 of these were labeled with more than one topic/class and were

discarded. The baseline system simply replaced every word in a document with its coarse

senses (thesaurus categories) and applied thek-means clustering algorithm. It obtained a purity

of 0.79.2

The state-of-the-art bag-of-words model, which clusters the documents using words as fea-

tures, obtained a purity of 0.86 (which is comparable to published results on this corpus).

However, as pointed out, that approach will not work on multilingual data. The next step will

be to cluster a multi-lingual dataset using a cross-lingualbaseline—replace each word with its

cross-lingual candidate senses. Then more sophisticated systems can be developed that make

1Yaroslav Riabinin was a fourth-year undergraduatestudentat the University of Toronto when we collaborated.
He is now a graduate student in the same university.

2Purity is one of the standard metrics used to evaluate automatic document clustering. It is the proportion of
documents clustered correctly. A document is considered tobe clustered correctly if it is placed in a cluster where
documents similar to it form the majority.
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use of cross-lingual distributional pro�les.

8.5.5 Enriching ontologies

Human-created knowledge sources, such as WordNet and Roget's Thesaurus, are widely used

to solve natural language problems. However, as language evolves and new words are coined

in different domains, the lack of coverage becomes an issue.I am presently developing an

algorithm to supplement a published thesaurus with new and previously unknown words. This

is essentially a classi�cation task where a category of the thesaurus that best represents the

usages of the unknown target is to be chosen. One way of doing this is to represent each

category by a vector in some multi-dimensional feature-space. A traditional word-distribution

approach to this will require sense-annotated data and the categories will be represented in

(high-dimensional) word-space. My algorithm uses DPCs to estimate these vectors, therefore

doesnot require sense-annotated data, and places the vectors in low-dimensional category-

space. Initial experiments show a large gain over the baseline. I am also interested in using the

DPCs to automatically enrich an ontology with more information, such as identifying lexical

entailment (Mirkin et al., 2007) and antonymy (Muehleisen,1997; Lucero et al., 2004).

8.5.6 Word prediction/completion

Word prediction or completion is the task of predicting or completing a partially typed word

using the preceding context as cue. Unigram and bigram models (Nantais et al., 2001) and

those combined with some part-of-speech information (Fazly, 2002) have been shown to per-

form reasonably well; yet there is plenty of room for improvement. It will be interesting to

determine if their performance can be improved on by using them in combination with mea-

sures of semantic distance. The hypothesis is that given a list of possible words, the intended

one is that which is closely related to the preceding context(Li, 2006; Li and Hirst, 2005).
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8.5.7 Text segmentation

A document may be about a certain broad topic, but different portions of the document tend

to be about different sub-topics. Text segmentation is the task of partitioning a document

into (possibly multi-paragraph) units or passages such that each passage is about a different

sub-topic than the ones adjacent to it. These passages are characterized by the presence of

more-than-random number of semantically related words (Morris and Hirst, 1991; Halliday

and Hasan, 1976). Further, these semantically related words may belong to different parts of

speech. Identifying such links between words (possibly to form lexical chains) is crucial to au-

tomatic segmentation. However, WordNet-based measures ofsemantic distance are good only

at estimating semantic similarity between nouns and distributional word-distance measures are

much less accurate. The distributional concept-distance approach proposed in this thesis has

neither limitation. Further, as I use a very coarse sense-inventory (thesaurus categories), the

method is expected to yield more, longer, and accurate lexical chains. Hearst (1997) uses

word–word co-occurrence distributions for text segmentation with encouraging results. How-

ever, those distributions suffer from problems due to word sense ambiguity. Distributional pro-

�les of concepts provide a natural way to determine associations between co-occurring word

senses. All these factors suggest that the ideas proposed inthis thesis hold promise in text

segmentation as well.
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Óscar Ferrández, Rafael M. Terol, Rafael Muniõz, Patricio Mart�́nez-Barco, and Manuel Palo-
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