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Abstract

Most words in any natural language have more than one possible meaning (or sense). Word sense

disambiguation is the process of identifying which of these possible senses is intended based on the con-

text in which a word occurs. Humans are cognitively and linguistically adept at this task. For example,

given the sentenceHarry cast a bewitching spell, we immediately understandspell to meana charm or

incantation and notto read out letters or a period of time. We can do this via our considerable world

knowledge and a fairly limited amount of surrounding context.

However, automatic approaches to sense disambiguation do not have access to our world knowledge,

and must take a different approach. The dominant approach at present is to rely on supervised learning,

where a human expert provides examples of correctly disambiguated words, and a machine learning

algorithm is used to induce a model from these examples. A key issue in such approaches is determining

how to represent the context in which the word occurs to the learning algorithm. Pedersen (2001) shows

that lexical features (word bigrams in particular) are excellent sources of disambiguation information for

a machine learning algorithm. However, there is a large body of previous work in supervised word sense

disambiguation that suggest that syntactic features such as part of speech tags and parse structures are

also reliable indicators of senses (e.g., McRoy (1992), Ng and Lee (1996)).

This thesis presents a detailed study of the impact of syntactic features in combination with lexical

features. We carry out an extensive empirical evaluation using most of the sense-tagged text currently

available in the research community. This includes the Senseval-1, Senseval-2,line, hard, serve and

interest data. We find that there is complementary behavior between lexical and syntactic features, and

identify several syntactic features that are particularly useful in combination with lexical features. We

also introduce a methodology based on comparing the optimal and actual performance of feature sets in

order to determine which features are particularly suited to being used in combination, and show that

this method leads to improved disambiguation results.

Finally, in the course of part of speech tagging this data, we identified a limitation in the widely

used Brill Tagger (1994) that has been corrected via a mechanism known as ”Guaranteed Pre-Tagging”

(Mohammad and Pedersen, 2003).
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1 INTRODUCTION

Most words in any language have more than one possible meaning. This phenomenon is known aspolysemy

and the different meanings are calledsenses of the word. Word sense disambiguation is the process of

identifying the intended sense of a word in written text. The word to be disambiguated is known as the

target word. The context consists of the sentence hosting the target word, and perhaps a few surrounding

sentences as well. For example, consider the following sentence wherespell is the target word:

����� ���� � �	
������ ����� (1)

spell has many possible senses such asa charm or incantation, to read out letter by letter anda period of

time. Here the context consists of the host sentence. The target word along with its context shall be termed

an instance. Thus, the process of word sense disambiguation involves classifying an instance into one of its

many senses, based on its context. Although inherent to human cognition, building a computer system adept

in word sense disambiguation remains a challenge.

The applications of word sense disambiguation are widespread, Kilgariff [27] describes several, including

machine translation, information retrieval and lexicography. Machine translation involves translating a text

from one language to another. One of the many reasons why the process is not trivial is polysemy. In order

to use a bilingual dictionary which gives translations of a word from one language into another, the intended

sense of the word must be determined first. The primary objective of information retrieval is to access the

most pertinent information. Consider a query to attain relevant documents. The query terms might individ-

ually have many senses. The query result might thus contain documents pertaining to various combinations

of the senses of the query terms. However, the relevant documents correspond to a certain combination. For

example, if Jack loves the game of cricket and types in the querycricket bats, it is likely that apart from

documents pertaining to the sport, the query might yield documents pertaining the mammalbat and the

insectcricket. The knowledge of the intended senses of the query terms will thus result in a focussed search,

culminating in the most pertinent documents.

There are two broad methodologies to word sense disambiguation: knowledge rich or machine learning.

This thesis takes a corpus based learning approach. A knowledge rich approach depends on external sources
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such as dictionaries and ontologies for the sense discriminating knowledge. Consider the following sentence

with field as the target word:

���� �� ������ ��	 �������� ���� (2)

One way to build a knowledge rich system would be to manually encode substantial amounts of world

knowledge and information into the system. Given the sentence above, the system should know thata piece

of land can be run over but asphere of interest cannot, just to discriminate between the possible senses of

field . It should be able to infer that thecricket related sense corresponding to the concept ofcricket, can-

not be the intended sense, as it is conflicting with the concept offootball . Based on the information stored

within the ontologies, the system must infer that the intended sense offield is an area constructed, equipped,

or marked for sports. Numerous systems have been built for tasks beyond word sense disambiguation in

particular domains with laboriously hand coded knowledge bases. Brill and Mooney [11] cite a few, such

as theblocks world problem described by Winograd [71]. Although very successful in their domains, these

systems possess inherent drawbacks. Brill and Mooney [11] point out that creation of these systems entailed

extensive domain knowledge. The procedure of building such knowledge bases is expensive, time intensive

and error prone since it must be done manually. These systems are brittle, that is, they are designed for a

particular task and are not easily scalable to changed or enhanced requirements.

In a machine learning approach the system learns from manually created examples and is then able to classify

a new instance with the desired sense. These are empirical approaches where a model gains discriminative

knowledge by finding pattern in a large text corpus. They obviate the need for large manually encoded

ontologies and are not as brittle. Mitchell [40] defines the concept of learning in his bookMachine Learning

as follows:

A computer program is said to learn from experience E with respect to some class of tasks T

and performance P, if its performance at tasks T, as measured by P, improves with experience E

The task under consideration in this thesis is Word Sense Disambiguation. The performance of the system is

evaluated based on the classification of instances for which the intended sense of the target words is known.

Experience is gained from a set of instances wherein the target words have been manually tagged with their

intended sense in the context. Such a data set is known as sense–tagged data and when used by an automated

3



system to gain experience is known as training data. Thus, the manually encoded information utilized by

most supervised word sense disambiguation systems is the sense–tagged data. A learning algorithm is used

to induce a model (or classifier) from the training data corresponding to each target word. Occurrences

of the target word in new sentences are then classified into appropriate senses by the classifier. It may be

noted that since a classifier is learned for every word to be disambiguated, sense-tagged data corresponding

to each of the target words is needed for the training. Sense–tagged data can also be used to evaluate the

performance of the resulting classifier and is then known as test data. The learning algorithm usually does

not utilize the complete instance to learn a classifier. It utilizes that information which is believed to be

relevant. For example consider the following sentence withcourt as the target word.

�	 �	���	� ��	 ��� �	
� ������	 ��	 �	�� � (3)

The presence ofsuit immediately afterlaw strongly suggests thatcourt is used in the judicial sense and not

the dating one. The system may thus utilize two word sequences or bigrams in an instance to determine the

sense of the target word. The bigrams used are referred to as features. The system may also use unigrams

for the purpose, where unigrams are defined as words that occur in the text. Since unigrams and bigrams are

part of the text itself, they are known as lexical features.

The learning algorithm acquires better sense discriminating knowledge if relevant features are chosen. The

decision tree of bigrams has been shown to perform very successfully by Pedersen [55]. The fact that lexical

features, such as bigrams, are easily extracted from data and result in high accuracy, make it a strong baseline

to compare results with. However, extensive work by the likes of McRoy [38] and Ng and Lee [53], has

shown the utility of syntactic features such as parts of speech and parse structures. Yet, it remains unclear as

to how much, if at all, the syntactic features help beyond what is provided by lexical features. Pedersen [56]

describes the notion of complementarity and redundancy which is useful to gain insight in this matter. Given

two separate sets of features, there will be a certain number of instances which will be correctly tagged by

both features sets individually. The ratio of these instances to the total instances quantifies the redundancy

in discriminating knowledge provided by the two feature sets. On the other hand, the accuracy obtained

by an optimal combination of the two system will be useful in determining the complementarity of the two

systems. By optimal combination we mean a hypothetical ensemble technique which correctly identifies

the intended sense of an instance, if any one of the feature sets suggests it. This ensemble technique, albeit

hypothetical, provides an upper bound to the accuracy achievable by the combination of the two feature sets.
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The difference between the optimal combination and the higher of the two accuracies of individual feature

sets may used to determine if the combination of the two feature sets is justified.

This thesis uses syntactic features such as parts of speech of words surrounding the target word and the parse

tree structure of the sentence housing the target word for word sense disambiguation. We believe that the

part of speech features are useful in capturing the local context of the target word which parse features help

identify features which involve words that are further away from the target word but syntactically related.

We study the contribution of syntactic features to word sense disambiguation when combined with Lexical

features. We performed an extensive set of experiments on the Senseval-2, Senseval-1,line, hard, serve and

interest data which together comprise of almost all the sense tagged text available in the research community.

We found that there is a significant amount of complementarity across lexical and syntactic features. We

identify numerous syntactic features which are particularly useful in sense disambiguation. Apart from

overall results for Senseval-1 and Senseval-2 data we provide a break up of the performance of the various

features for each part of speech. We specifically point out features which are useful disambiguate words

belonging to particular parts of speech.

In the process of running these experiments, we have part of speech tagged and parsed the Senseval-2,

Senseval-1,line, hard, serve andinterest data using theposSenseval [48] andparseSenseval [47]

packages which utilize the Brill Tagger and Collins Parser, respectively. In the course of the tagging we

identified a limitation of the Brill Tagger and overcame it with a mechanism known asGuaranteed Pre-

Tagging [42], which is also discussed in this thesis.
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2 BACKGROUND

2.1 Decision Trees

2.1.1 Decision Trees as Classifiers

A decision tree is a kind of classifier. Given an instance, it assigns a class to it by asking a series of

questions about it. Except for the first, the question asked depends on the answer to the previous question.

For example, consider the task of choosing toys for four year old Max. A decision tree may be used to

automate the process. Given a new toy, the decision tree may assign the classesLove It, Hate It or So So to

it, thereby predicting if Max would love the toy, hate it or not really have an opinion on it. Decision trees

have an inverted tree structure, with interconnected nodes as shown in figure 1. Every node is associated

with an attribute or question about the instance being classified. In figure 1, nodes are marked by rectangles,

while the circles represent leaves. Each leaf is associated with a class. The various nodes and leaves are

connected to each other by branches. The branches have been shown as directed straight lines.

Big

Yes

Other

Red

Blue

No

No Yes

No Yes

No

 SIZE ?

   SIZE ?  CAR ?

Small

    COLOR ?

MOVING PARTS ?

SOUND ?

  HATE   HATE LOVE

  HATE

 LOVE SO SO

 SO SO

  HATE  LOVE

Small Bigl

Yes

   CAR ?

Figure 1: Decision Tree to Choose Toys

Each possible value of the attribute is associated with a branch emanating from that node. For example,

figure 1 has a node with the associated attributeCOLOR. It has three branches emanating from it which are

associated with the valuesBlue, Red andOther. At any given noden, the instance being classified takes a
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branch to arrive at the next node or leaf. The branch corresponding to the value of the attribute associated

with n is chosen. For example, if COLOR is the current node and the toy being classified isBlue, the

corresponding branch is chosen to arrive at the nodeCAR. Then the question ‘Is the toy a car?’ is asked. If

yes, the branch corresponding to ‘yes’ is taken to arrive at the nodesize. Depending on thesize of the toy

appropriate branch is taken to arrive at the leaf. If the toy is big, we arrive at the leaf nodeLOVE and the tree

predicts that Max will love the toy. Given a new instance, the afore mentioned process starts at the root and

is repeated until we reach a leaf. The class associated with the leaf is then assigned to the instance. Figure 2

shows how toys X and Y are classified by the decision tree depicted in figure 1. The attribute values of toys

X and Y are listed in table 1.

Table 1: Attributes values of instances X and Y

Instance MOVING PARTS COLOR CAR SIZE SOUND

X � �� ���� � �� ��	 
�

Y 
� ���� 
� ��	 
�

Yes

Small Big

Yes

Other

Red

Blue

No

No Yes

No Yes

No

 SIZE

MOVING PARTS

   SIZE  CAR

   CAR

SOUND

  HATE   HATE LOVE

  HATE

 LOVE SO SO

 SO SO

  HATE  LOVE

X

X

X

X

Y

Y

Y

Y

Small Bigl

    COLOR

Figure 2: Classification of Toys X and Y

Consider how toy X is classified by the decision tree. We start from the root node which isMOVING PARTS.
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We ask the questionDoes X have moving parts? Based on the answer,Yes, we choose the appropriate branch

to arrive at nodeCOLOR. We then askWhat is the color of X? which leads us to nodeSIZE. We then ask

What is the size of X?. Since X is big, we choose the corresponding branch and arrive at a leaf. The iterative

process is stopped as we have reached a leaf and the class associated with the leaf,LOVE in this case, is

assigned to the instance. The decision tree thus predicts that Max will like the big blue car X. Toy Y is

classified in a similar manner. Due to the nature of the decision tree structure, it is useful only with features

which have discrete values. Continuous valued features if associated with a node will lead to the node having

infinite branches emanating from it. Continuous features might still be incorporated if made discrete. Due

to the feature oriented structure of the decision tree, it is ideally suited to classification problems where the

instances can be easily and adequately described by a finite number of discrete features.

2.1.2 Learning Decision Trees

A decision tree is learned from a set of instances for which the classification is known, using a suitable

learning algorithm. This set of examples is known as the training set. Returning to the toy example, if the

attributes of the toys which Max has liked and disliked in the past is known, a decision tree can be learned.

Two of the most successful decision tree learning algorithms are C4.5 [63] and CART [7], both of which are

based on ID3 [61].

Given a set of training instances, the ID3 algorithm learns a decision tree that classifies the training examples

as correctly as possible. The learning of the tree is a top down and greedy approach. The attribute associated

with the root node is chosen first, based on the complete set of training examples. The root node is the first

question to be asked about an instance. The attributes of the lower nodes are learned progressively. Thus,

the tree is learned from root to leaves.

Each node is chosen based on a set of training instances and candidate attributes. The root node is chosen

based on all the available training instances and its set of candidate attributes encompasses all the attributes.

The attribute (one of the candidate attributes) which best classifies the associated instances is chosen to be

the node. Branches are created going downward from this node to its child nodes. Each branch corresponds

to a distinct value of the chosen attribute. Instances associated with the parent, are passed down along these

branches as long as they have the same attribute value corresponding to the branch. Child nodes are created

that terminate these branches, based on the subset of the training instances associated with the parent, which
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are passed down the branch. All candidate attributes associated with the parent, minus the chosen attribute

for the parent, form the candidate attributes out of which the child node is chosen. The process of learning

as described above is repeated recursively for each of the child nodes leading to simultaneous generation of

nodes in various paths starting from the root node. It may be noted that there is a recursive partitioning of

the training data along every path, entailing the requirement of a large training data for effective learning. If

all the instances associated with a node belong to the same class,say X, a leaf node is created and no further

child nodes are generated along that path. ClassX is assigned to the leaf. Thus a particular path from root

to leaf need not have all the attributes as nodes. Further, there may be attributes which do not figure in the

learned decision tree at all. If all the attributes have been used up as nodes along a path, the class,say m ,

most common amongst the examples associated with the node is determined. A leaf node assigned the class

m is created and no further nodes are generated along that path.

The ID3 learning is greedy in the sense that the attribute which is most effective in classifying the training

instances available is chosen as the node. The effectiveness of an attribute in classifying a given set of

examples is quantified using the concepts of Entropy and Information Gain. The entropy of a set of instances

gives an idea of the distribution of instances as per the various possible associated classes. If all instances

belong to the same class, there is said to be a 0 entropy. If instances are equally distributed among all the

possible classes, the entropy is 1 with minimal uncertainty. A low entropy value indicates that the attribute

is able to accurately distinguish between the classes and is thus desirable. Entropy is calculated using the

following formula:

��������� �
��

���

��� � ��	� ���� (4)

c is the number of possible classifications andp� is the fraction of instances ofS which are of classi.

Information gain is defined as the difference in entropy of the parent node and the sum of entropies of all its

child nodes. The entropy of the child nodes is normalized based on the number of examples associated with

the child node. Mathematically, the information gainGain(S,A) for an attributeA of a parent node associated

with the set of examplesS is represented as follows:

��������� � ����������
�

��� ���	
���

����

���
���������� (5)

wherev takes on the different values ofA associated with the various branches emanating from the parent

node. S� stands for the subset of instances ofS, which have valuev for attributeA. The attribute with the

highest information gain is chosen to represent the node.
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2.1.3 Overcoming the Drawbacks of ID3

While it represents the start of modern decision tree learning, the ID3 algorithm has a number of limitations.

It can be used only if the features have discrete values. The values for all the attributes of the instances

must be known. ID3 does not account for instances with missing values or continuous valued attributes.

Yet another potential drawback of the ID3 algorithm is over-fitting. The classifier learned might be too

specific for the training data, that is, apart from capturing the general features of instances in each class, the

classifier could have captured idiosyncrasies specific to the training set which are not really representative

of the problem in general. Thus, the decision tree memorizes the examples in the training set, thereby

classifying them well but fails to do nearly as well for new test data. The C4.5 [63] algorithm was intended

to overcome these limitations.

Consider a node for which we need to choose a feature based on Information Gain, such that one of the

associated instances has an unknown value for a feature F. Let F be a boolean feature which can take one

of two values 0 an 1. The C4.5 [63] algorithm determines the probabilities of F having each of the possible

values. These probabilities are calculated based on simple counts of associated instances (N) for which the

value of F is known. The probability assigned to a particular value, say 0, is equal to the ratio of instances

in N which have F with value 0 upon the total number of instances N. Thus pruning removes certain sub-

trees whose absence does not reduce the accuracy of the classifier significantly. There are many pruning

techniques such as the reduced error pruning [62] and rule post pruning [63], however, it is the latter which

is used in C4.5. Since, all our experiments deal with discrete features, we shall not delve into details of how

continuous valued features are handled by C4.5. In this thesis we use the C4.5 algorithm as implemented

by Waikato Environment for Knowledge AnalysisWeka[23][72], to learn decision trees for each word to

be disambiguated. The Weka implementation is in Java and is based on a modified version of the C4.5

algorithm known as C4.5 Revision8.

In general decision tree learning is sensitive to the training examples. Slight variations in the training set may

create significantly different trees. A few spurious instances might mislead the learning process creating an

erroneous tree structure. This may be overcome by bagging [6], which is a technique of generating multiple

classifiers by random sampling of the training data set with replacement. That is, multiple classifiers are

learnt based on different sets of training data or samples. The individual sets of training data are created

from the total available training instances as follows. If the training data hasN instances, thenN draws are
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made on it. Each draw selects one instance to be part of a sample. A copy of the instance is put back in

before the next draw. Thus, afterN draws,N instances are chosen to be part of a sample. It may be noted that

there might be multiple copies of some instances in a sample. Certain instances from the training data may

not be selected to be part of the sample at all, which is intended in order to smooth out spurious or misleading

examples. Multiple samples are created this way, each acting as training data for a classifier. One vote is

assigned to the classification of an instance by each classifier. The class which gets the maximum votes is

chosen. Quinlan [64] has shown that the accuracy of decision trees can be improved by bagging [6].

2.1.4 A Word Sense Disambiguation Tree

Word sense disambiguation involves classifying an occurrence of a word in its context, into one of its many

discrete senses. Each such instance, composed of the word and its context, can be represented by a rich set

of discrete features which may be effectively utilized by decision trees. Pedersen [55] shows that varying

the basic learning algorithm yields little variations in the achieved accuracies for a given task of word sense

disambiguation. He states that identifying the most useful features to use for disambiguation is of greater

significance. He believes that decision tree learning for word sense disambiguation is reasonably accurate

and has further advantage of showing relationship amongst features via the structure of the decision tree.

Since each of the words has multiple possible senses, the task of word sense disambiguation is a multi–class

problem. All features used in the thesis are discrete and boolean which take on the values 0 or 1. Features

which were originally multi-valued have been split into multiple boolean features as follows. Consider a

feature F which has three possible values - a, b and c. It is split into three features - F1, which determines

if ‘a’ occurs or not, F2 which determines if ‘b’ occurs or not and F3, which determines if ‘c’ occurs or not.

Also, as mentioned earlier, given a new instance, the C4.5 algorithm calculates a probability for each of the

intended senses. The sense which has the highest probability is chosen as the intended sense. However, if

the difference in the top two probabilities is less than 0.05, the instance is tagged with both senses. If only

one of the two is listed as the correct sense of the system, this particular assignment of senses gets a score of

0.5. Figure 3 illustrates a generic decision tree for word sense disambiguation. Choosing the right features

and efficiently capturing these features from a given data set plays a vital role in the success of decision

trees. The following sections detail some of the potentially useful features for word sense disambiguation.
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Figure 3: A Generic Decision Tree for Word Sense Disambiguation

2.2 Lexical Features

In strictly corpus based, supervised word sense disambiguation, the classification system relies solely on the

knowledge gained from training instances to assign senses to the words being disambiguated or target words

in the test data. The features or attributes of an instance which help identify the intended sense of target

word are identified. Both training and test instances are represented by these features and corresponding

values for the instance. Numerous features may be used, based on different knowledge sources such as

collocations, part of speech and parse structures. Features which may be captured directly from the text are

known as lexical features and are described in the following sub-sections.

2.2.1 Surface Form

A word we observe in text is known as surface form. It may be broken down into a stem and a possible

prefix, infix and suffix. The stem, which is also known as the root word, is the base form of the word which

has meaning and cannot be broken up into multiple tokens. Suffixes, prefixes and infixes together form a

general class known as affixes. They are a set of characters which do not have meaning on their own but add

or change the meaning of a stem when attached to it. Suffixes, prefixes and infixes may attach at different

positions to the stem to form the different surface forms associated with the stem. A word without any
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affixes is also considered to be a distinct surface form of the stem. Consider the verbqualify. It has no

affixes, and hence both, the surface form and stem, arequalify. It has the following meanings in Merriam

Webster’s Online Dictionary:

A-I: to reduce from a general to a particular or restricted form : MODIFY

A-II: to make less harsh or strict : MODERATE

A-III: to characterize by naming an attribute : DESCRIBE

A-IV: to fit by training, skill, or ability for a special purpose

A-V: to declare competent or adequate : CERTIFY

A-VI: to be or become fit (as for an office) : meet the required standard

A-VII: to acquire legal or competent power or capacity

A-VIII: to exhibit a required degree of ability in a preliminary contest

A prefix is a set of characters attached to the start of a stem to modify or change its meaning. For example the

prefix pre when attached toqualify formspre-qualify, which is a different surface form of the stemqualify.

It adds one of the following meanings to the sense ofqualify:

B-I: earlier than : prior to : before

B-II: preparatory or prerequisite to

B-III: in front of : anterior to

A suffix is a set of characters attached to the end of a word to modify or change its meaning. For example

the suffixied when attached toqualify formsqualified which has the meanings listed below.qualified is yet

another surface form of the stemqualify.

C-I: fitted (as by training or experience) for a given purpose : COMPETENT

C-II: having complied with the specific requirements or precedent conditions (as for an office or employ-

ment) : ELIGIBLE
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C-III: limited or modified in some way

Other surface forms ofqualify are qualification, qualifiable and post-qualify. It may be noted that each

surface form has at least a slightly different meaning from the rest, however, the granularity of sense distinc-

tions made in most dictionaries is broader. Thus a particular sense in a dictionary may encompass multiple

surface forms of a word. For example, sense C-I ofqualified is very close in meaning to sense A-IV of

qualify and a dictionary might have an entry for just one sense corresponding to both. Conversely, a surface

form may have one or more senses and not necessary all the senses corresponding to all the surface forms

of the stem. Thus, the knowledge of the exact surface form in an instance will aid in restricting the possible

senses of the word. For example consider a dictionary with the following coarser senses forqualify such

that sense C-I and C-II ofqualified come under sense D-III and sense C-III comes under D-II.

D-I: modify or moderate

D-II: describe

D-III: make fit or eligible

Then given that the surface form isqualified we are certain that it has sense D-I or D-III and not sense D-II

corresponding todescribe.

Additionally, given a sense, some surface forms occur more frequently than others. This information may be

utilized to identify the sense which is most likely given a morphological form of a word and which sense is

rarely associated with that form. For example, the training data used in the Senseval-2 exercise has instances

corresponding to the verbtreat (Senseval-2, held in the summer of 2001, was an event where numerous word

sense disambiguation systems from across the world were evaluated on a common data set). The surface

form treating occurs in 15 of the instances, 10 of which are tagged with the sensetreat%2:29:00::. Three

of the instances are tagged with the sensetreat%2:31::, while one each totreat%2:30:: andtreat%2:41::.

Given a test instance with the target word having the surface formtreating, the sensetreat%2:32:00:: may

be ignored at the outset. Further, if the other features fail to confidently identify the intended sense, the

surface form frequency information may be used to tag the instance with the sensetreat%2:29:00::, which

was far more frequent in the training data for the given surface form, than the rest. The surface form of a
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word can be easily captured from the given instance. Information about which sense is common and which

is rare for a given surface form, may be learnt from a training set or acquired directly from a dictionary.

2.2.2 Most Frequent Sense

The number of times a word is used in its various senses is not uniform. Words tend to be used more

commonly in some senses than others. For example the worddam in its noun form has two senses listed

in Table 2. The sense pertaining tothe body of water is much more common than theanimal sense in

nearly all domains of text. This phenomenon is reflected in bodies of text, as well. The distribution of the

instances in Senseval-2 test data, which have the adjectiveblind as the target word is shown in Table 3. If all

other features fail to confidently identify the intended sense, choosing the most frequent sense is expected

to give an accuracy better than that obtained by a random choice. The most frequent sense of a word can be

identified by a simple count of the instances with the target word in various senses. From the details in table

3, it is evident that given a random test instance with the target wordblind, senseblind%3:00:00:: would be

a good guess of the intended sense.

Table 2: Senses ofdam

Sense Usage

Barrier to a body of water common

Female parent of a quadrupedvery rare

2.2.3 Unigrams

Unigrams are individual words that occur in the context of an instance. Consider the following sentence:

��	 ����	 �������	� ��	 ���	 (6)

It has the unigramsthe, judge, dismissed andcase. It may be noted that the unigramsjudge anddismissed

suggest thatcase has been used in thejudicial sense and not thecontainer sense. Unigrams likethe, it, on, at

andof which are found in almost all sentences and which occur independent of the intended sense of words
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Table 3: Instance Distribution ofblind

Sense Frequency Percentage

blind%3:00:00:: 47 85.5%

blind%5:00:00:irrational:00 6 10.9%

blind%5:00:00:unperceptive:00 1 01.8%

blind man%1:18:00:: 1 01.8%

TOTAL 55 100%

are included in a list of words that are thought to be unimportant for disambiguation. This list is known as

the stop list and all unigrams which occur in the stop list are ignored. Those unigrams which occur at least a

few times (U�� say) in the context and which are not listed in a pre-determined stop list, are considered as

features. Note that the surface form feature which considers only the target word is a subset of the unigrams

feature. Unigrams consider not just the target word but other words in the context as well.

2.2.4 Bigrams

Bigrams are two-word sequences in the context of an instance. Like Unigrams, the words forming the

Bigram may or may not include the target word. Consider the sentence:

��	 ��	�	�� ���	 �� ��
	� � ����	 ���� (7)

It is made up of the bigramsthe interest, interest rate, rate is, is lower, lower in, in state andstate banks.

We notice that the bigraminterest rate suggests thatbank has been used in thefinancial institution sense

and not in theriver bank sense. Like unigrams, an appropriate stop list may be created to ignore bigrams

which occur commonly in text and independent of the intended sense of words. Only those bigrams may

be considered which occur at least a certain pre-ascertained times (B�� say), in the training data. Bigrams

composed of words which may not occur consecutively and have one or more words between them may

also be considered by allowing window size of�n words in between. This helps capture bigrams likerate

interest which would otherwise be lost due to the presence ofof in the phraserate of interest. Word pairs

which have more thann words between them are not considered.
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2.2.5 Collocations

Words in an ordered sequence, which tend to occur together more often than random chance, form a colloca-

tion. For examplecar chase or bread and butter. The former is a compositional collocation as its meaning

is understood by the conjunction of the meanings of its constituent words,car andcrash. The latter is a

non-compositional (idiomatic) collocation which takes on a meaning quite different from its constituents.

Collocations are strong indicators of the sense of words constituting it. For example, given any instance

with the collocationbread and butter, butter will always be used in thefood sense and not theflattery sense.

This demonstrates Yarowsky’sOne Sense per Collocation hypothesis [73]. Additionally, collocations are

also strong indicators of the topic of discussion and hence may be useful in suggesting the intended sense of

words which may not be part of the collocation but are in the same instance. For example, the collocation

interest rate suggests that the topic of discussion is related to money. If the wordbank is used in the same

instance then it is likely that it has been used in thefinancial institution sense and not the river bank sense.

The inventory of collocations is either accessed directly from a dictionary or extracted from a text corpus.

Those word sequences are chosen as collocations which occur more often in the text than would be expected

by random chance.

2.2.6 Co-Occurrences

Co-occurrences are pairs of words that tend to occur in the same context, not necessarily in any order and

with a variable number of intermediary words. For exampletestify andcourt. Like collocations they too

are indicative of a sense of the constituent words.court for example could bethe place of justice or solicit

for marriage. But the presence oftestify in the context suggests that it is being used to refer tothe place

of justice. A list of co-occurrences having the target word as one of the constituents can be taken from a

dictionary or extracted from a sense tagged text. A body of text where certain words are marked with their

intended sense by a human is known as a sense tagged text. extracting collocations from sense tagged text

involves the application of conditional probability as defined by the formula below and entails the following

stipulations:

Cp(i,k) = N��� / N� (Ng and Lee [53])

Cp(i,k) is the conditional probability of the target word being used in sense-i, given that the word K co-
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occurs with it. N��� is the number of times the word k has co-occurred with the target word and the sense of

the target word has been i. And N� is the number of times the word k has co-occurred with the target word.

Following stipulations are usually applied: Only those pairs with a conditional probability greater than a

pre-ascertained minimum (Cp(i,k)��) are chosen. The pair must co-occur in a certain minimum(N���)

number of sentences. An upper limit(Max) to the number of co-occurrences per word is set; the most

suggestive chosen.

Divergent to the case of collocations though, co-occurrences invariably lack non-content words. This is

apparent from the formula, as non-content words likea, in and the occur in all sentences and hence occur

with the target word, in most of its senses. Note, content words can loosely be defined as all words other

than articles, prepositions and determiners.

2.3 Syntactic Features

2.3.1 Part of Speech Features

Words may be classified into different semantic/syntactic classes such as nouns, verbs and adjectives, known

as the parts of speech. Assigning the appropriate part of speech to the words in a text is known as part of

speech tagging. Consider the following sentence.

���� 
��� ����� ��	 �		��� (8)

It may be part of speech tagged as shown below, given, NNP stands for proper noun, MD for modal, VB for

verb, DT for determiner and NN for noun.

�������� 
������ �������� ��	��� �		������ (9)

Instances of words in different parts of speech have disparate possible senses. Consider the the wordfloat.

It can be a noun or a verb depending on the context. The Senseval-1 training data has the nounfloat tagged

with 8 senses and the verbfloat with 15 (Senseval-1 exercise, held in the summer of 1998 was a word

sense disambiguation event preceding Senseval-2). Given a test instance withfloat as the target word, if we

know thatfloat was used as a noun, we straightaway eliminate the 15 verb senses from consideration. More

generally, if we know the part of speech of the target word, we restrict the possible senses of the word to

the senses corresponding to that part of speech. Most word sense disambiguation systems assume resolution
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of part of speech of the target word, at least up to the broad part of speech level. That is, the target words

will be marked to be a nouns, verbs adjectives and so on before fed as input to the system. The system then

learns a classifier for the word – part of speech combination. For example a classifier is learnt for the noun

float. Yet another classifier is learnt for the verbfloat. Thus, part of speech of the target word is inherently

utilized by these systems.

A word used in different senses in different sentences is likely to have words with different parts of speech

around it. Further, the two or three part of speech tag sequences around the target word are also likely to be

different. Consider the following sentences, given that the target word isturn. The part of speech of each

token follows the forward slash attached to it.

����� � ������� �������� �	����� ���
������ �
������ �	����� ��� (10)

����� � ������� �������� �	����� �������� ����� ������ ���������� ��� (11)

Notice that the set of part of speech tags to the right of the target word is significantly different in the two

instances, which have different intended meanings ofturn. The first sentence has the sense corresponding to

changing sides/parties while the second has the sense ofchanging course/direction. Thus the part of speech

tags of the word to the right of the target word - P�, and the part of speech of the word two positions to the

right of the target word - P�, may be used as features to aid word sense disambiguation. The same may be

true for the part of speech tags to the left of the target word in certain other contexts. Thus, P
��, P

�� and

so on may be used as features as well. In this notation, the negative indicates words to the left of the target

word. The exact sequence of these tags is also likely to differ when the word is used in different senses

and so the sequence information may be used as a feature as well. In the sentences above, the sequence of

part of speech tags P� and P� helps identify the intended sense. We shall refer to this sequence as P�P�, a

mere concatenation of the symbols identifying the individual parts of speech. Sequences such as P
��P��,

P
��P�P� and P�P�P� are some more examples of the possibly useful features. Note, P� stands for the part of

speech of the target word. As we go away from the target word, on either side, the smaller is the probability

of the part of speech tags being affected by the usage of the target word. It is generally believed that the

range of influence of the target word on parts of speech of its neighbors stretches up to one or two and

possible three, positions away from the target word.

To summarize, words in different senses are likely to be surrounded by disparate part of speech tag sets.

19



This information may be captured by part of speech features and utilized to classify new instances of the

word.

2.3.2 Parse Features

Identifying the various syntactic relations amongst the words and phrases within a sentence is known as

parsing. A phrase is a sequence of words which together has some meaning but is not capable of getting

across an idea or thought completely. For example,the deep ocean. The word within the phrase which is

central in determining the relation of the phrase with other phrases of the sentence is known as the head

word or simple head of the phrase. The part of speech of the head word determines the syntactic identity of

the phrase. The aforementioned phrase hasOcean as the head, which is a noun. The phrase is thus termed a

noun phrase. A parser is used to automatically parse a sentence and identify the constituent phrases and the

head words of these phrases. Consider the sentence:

����� ����	� ���� � �	
������ �!	�� (12)

Some of the aspects a parser might identify are that the sentence is composed of a noun phraseHarry Potter

and a verb phrasecast a bewitching spell. The verb phrase is in turn made of a verbcast and a noun phrase

a bewitching spell. We shall call the verb phrase parent (phrase) of the verbcast and the noun phrasea

bewitching spell. Conversely, the verb and the noun phrase shall be referred to as child (phrases) of the verb

phrase. The parsed output will also contain the head words of the various phrases and a hierarchical relation

amongst the phrases depicted by a parse tree. Figure 4 depicts a sample parse tree for the above sentence.

Following is a description of the various syntactic features based on the parsed output of a sentence that are

used for word sense disambiguation in this thesis.

2.3.3 Head Word of the Phrase

The head word of a phrase is suggestive of the broad topic of discussion. It is expected that the words in

the phrase have senses pertaining to the same topic. Consider the instance from Senseval-2 training data

shown in Figure 6 (only the sentence housing the target word is shown for brevity, the other sentences of the

context being ignored). Figure 7 shows the parsed output of the sentence in Figure 6.

20



NOUN PHRASE

SENTENCE

VERB PHRASE

NOUN PHRASEHARRY

    NNP NNP VBP

DT JJ NN

spell

castPOTTER

a

PARENT

CHILD

bewitching

Figure 4: Sample Parse Tree

CHILD PHRASES/WORDS

WordPhrase

Right Sibling of Phrase DLeft Sibling of phrase D

ECBA D

PARENT PHRASE

Figure 5: Sample Parse Tree
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�instance id=”art.40078” docsrc=”bncA6E 1305”�

�answer instance=”art.40078” senseid=”artschool%1:06:00::”/�

�context�

I was proud of getting accepted, particularly at St Martin’s because it was such a good

�head�art�/head� school, but Fine Art seemed a fast road to no where

�/context�

�/instance�

Figure 6: Head Word of a Phrase: Instance from Senseval-2 Training Data.

�instance id=”art.40078” docsrc=”bncA6E 1305”�

�answer instance=”art.40078” senseid=”artschool%1:06:00::”/�

�context�

�P=”TOP˜was˜1˜1”��P=”S˜was˜3˜1”��P=”S˜was˜2˜2”��P=”NPB˜I˜1˜1”� i �p=”PRP”/�

�/P� �P=”VP˜was˜2˜1”� was�p=”VBD”/� �P=”ADJP˜proud˜2˜1”� proud�p=”JJ”/�

�P=”PP˜of˜2˜1”� of �p=”IN”/� �P=”SG-A˜getting˜1˜1”��P=”VP˜getting˜3˜1”� gett ing

�p=”VBG”/� �P=”VP-A˜accepted˜1˜1”� accepted�p=”VBN”/� ,�p=”PUNC,”/� �/P�

�P=”SBAR˜because˜3˜2”��P=”ADVP˜particularly˜2˜1”� particularly�p=”RB”/� �P=”PP˜at˜2˜1”�

at�p=”IN”/��P=”NPB˜’s˜3˜3”� st�p=”NNP”/�martin�p=”NNP”/� ’ s �p=”POS”/� �/P�

�/P� �/P� because�p=”IN”/��P=”S-A˜was˜2˜2”��P=”NPB˜it˜1˜1”� it �p=”PRP”/�

�/P� �P=”VP˜was˜2˜1”� was�p=”VBD”/� �P=”NPB˜school˜5˜5”� such�p=”PDT”/� a

�p=”DT”/� good�p=”JJ”/��head�art�/head��p=”NN”/� school �p=”NN”/� ,�p=”PUNC,”/�

�/P� �/P� �/P� �/P� �/P� �/P� �/P� �/P� �/P� �/P� but�p=”CC”/�

�P=”S˜seemed˜2˜2”��P=”NPB˜Art˜2˜2”� fine�p=”NNP”/� art�p=”NNP”/� �/P�

�P=”VP˜seemed˜2˜1”� seemed�p=”VBD”/� �P=”NP-A˜road˜3˜1”��P=”NPB˜road˜3˜3”� a

�p=”DT”/� fast�p=”JJ”/� road�p=”NN”/� �/P� �P=”PP˜to˜2˜1”� to�p=”TO”/�

�P=”NP-A˜nowhere˜2˜1”��P=”NPB˜nowhere˜1˜1”� nowhere�p=”RB”/� �/P�

�/context�

�/instance�

Figure 7: Head Word of a Phrase: Parsed structure of the sentence from Figure 6.
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We notice that the target wordart is part of a noun phrasesuch a good art school ,. The head word of this

phrase isschool which is clearly related to theart school%1:06:00:: sense of art. As is evident, the head

words of a phrase may help restrict the possible senses of word (if not uniquely identify it). This argument

is supported by theOne Sense per Discourse hypothesis proposed by Gale, Church and Yarowsky [22]. It

may be noted, given that the target word is an adjective, the head of the phrase housing the target word is

expected to be the noun which is qualified by the adjective. Besides the head word, the part of speech of the

phrase encompassing the target word, is also used as a feature. This is to examine if the part of speech of

the phrase housing the target word is useful in partitioning the possible senses of the target word.

2.3.4 Head Word of the Parent Phrase

Similar to the head word of a phrase, the head word of parent phrase of the phrase which houses the target

word is suggestive of the broad topic of discussion. It is expected that the words in the child phrases have

senses pertaining to the same topic. Consider the instance from Senseval-2 training data shown in Figure

8 (only the sentence housing the target word is shown for brevity, the other sentences of the context being

ignored). Figure 9 shows the parsed output of the sentence in Figure 8.

�instance id=”channel.40187” docsrc=”bncCRM 4307”�

�answer instance=”channel.40187” senseid=”channel%1:10:00::”/�

�context�

On the basis of these studies, Ca 2+ is suggested to play a central role in photorecovery

and light adaptation, not only by regulating guanylate cyclase, possibly through recoverin,

but also by modulating the cGMP-gated�head�channel�/head� through calmodulin

interaction with the 240K protein.

�/context�

�/instance�

Figure 8: Head Word of the Parent Phrase: Instance from Senseval-2 Training Data

Notice that the target wordchannel is part of a noun phrasethe cgmp-gated channel. The head word of

this phrase ischannel which on its own is not of much use in discriminating amongst the various senses
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�instance id=”channel.40187” docsrc=”bncCRM 4307”�

�answer instance=”channel.40187” senseid=”channel%1:10:00::”/�

�context�

. . .

. . .

�P=”CONJP˜but˜2˜1”� but�p=”CC”/� also�p=”RB”/� �/P� �P=”PP˜b y˜2˜1”� by

�p=”IN”/� �P=”SG-A˜modulating˜1˜1”��P=”VP˜modulating˜4˜1”�modulating

�p=”VBG”/� �P=”NPB˜channel˜3˜3”� the�p=”DT”/� cgmp-gated�p=”JJ”/�

�head� channel �/head� �p=”NN”/� �/P� �P=”PP˜through˜2˜1”� through�p=”IN”/�

�P=”NPB˜interaction˜2˜2”� calmodulin�p=”NN”/ � interaction�p=”NN”/� �/P� �/P�

�P=”PP˜with˜2˜1”� with �p=”IN”/� �P=”NPB˜protein˜3˜3”� the�p=”DT”/� 240k

�p=”CD”/� protein�p=”NN”/� . �p=”PUNC.”/� �/P� �/P� �/P� �/P� �/P�

�/context�

�/instance�

Figure 9: Head Word of Parent Phrase: Parsed structure of sample sentence from Figure 8.

of the target word. The parent of this noun phrase is a verb phrase which has the following constituents:

a verbmodulating, the noun phrase which holds the target word and two prepositional phrases. The head

word of this verb phrase is the verbmodulating which suggests thetransmission channel sense of the target

word channel which corresponds to the sense IDchannel%1:10:00::. Note that in this case, the verb object

relationship is captured by the parent phrase head word and target word. The nounchannel is the object of

the verbmodulating. Thus, the head word of a parent phrase of the target word may help restrict the possible

senses of word if not uniquely identify it. This argument is also supported by theOne Sense per Discourse

hypothesis proposed by Gale, Church and Yarowsky [22]. Besides the parent phrase head, the part of speech

of the parent phrase, is also used as a feature. This is to examine if the part of speech of the parent phrase is

useful in partitioning the possible senses of the target word.
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2.3.5 Head Word of the Sibling Phrases

Yet another set of phrases which are syntactically related to the phrase which houses the target word are

its sibling phrases. As depicted in figure 5, a parent phrase may be made up of many child phrases. We

shall call the child phrasessiblings of each other. Each child may have at most two nearest siblings. A left

sibling composed of words immediately preceding the child phrase and a right sibling composed of words

immediately following the child phrase. Once again, based on theOne Sense per Discourse hypothesis, we

believe that the head words of these sibling phrases may be suggestive of the topic of discussion and hence

indicative of the intended sense of the target word. Consider the instance from Senseval-2 training data

shown in Figure 8 (only the sentence housing the target word is shown for brevity, the other sentences of the

context being ignored). Figure 11 shows the parsed output of the sentence in Figure 10.

�instance id=”nature.40143” docsrc=”bncA3V 57”�

�answer instance=”nature.40143” senseid=”goodnature%1:07:00::”/�

�context�

With his burly, four-square stance, his ruddy colouring, his handsome strong-featured face,

he radiated energy, warmth and good�head�nature�/head� .

�/context�

�/instance�

Figure 10: Head Word of the Left Sibling Phrase: Instance from Senseval-2 Training Data.

Notice that the target wordnature is part of a noun phrasegood natured. The left sibling of the noun phrase

is another noun phraseenergy, warmth. The head word of the sibling phrase is the nounwarmth which

along withenergy andgood nature are used to describe a face. Since the words are used to describe the

same entity, we expect them to be closely related in meaning. Thus, the head word of the left sibling phrase

and by symmetry that of the right sibling phrase of the target word may help restrict the possible senses of

a word if not uniquely identify it. In this particular instance, the wordwarmth suggests that the target word

nature hasgood nature sense which corresponds to the sense IDgood nature%1:07:00::. Sibling phrase

apart, the part of speech of the sibling phrase, is also used as a feature. This is to examine if the part of

speech of the sibling phrase is useful in partitioning the possible senses of the target word.
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�instance id=”nature.40143” docsrc=”bncA3V 57”�

�answer instance=”nature.40143” senseid=”goodnature%1:07:00::”/�

�context�

�P=”P˜radiated˜1˜1”��P=”S˜radiated˜3˜3”��P=”PP˜With˜2˜1”� with �p=”IN”/�

�P=”NP-A˜stance˜3˜1”��P=”NPB˜stance˜4˜4”� his�p=”PRP$”/� burly�p=”JJ”/� ,�p=”PUNC,”/�

four-square�p=”NN”/� stance�p=”NN”/� ,�p=”PUNC,”/� �/P� �P=”NPB˜colouring˜3˜3”� his

�p=”PRP$”/� ruddy�p=”JJ”/� colouring�p=”NN”/� ,�p=”PUNC,”/� �/P� �P=”NPB˜face˜4˜4”�

his�p=”PRP$”/� handsome�p=”JJ”/� strong - featured�p=”JJ”/� face�p=”NN”/� ,�p=”PUNC,”/�

�/P� �/P� �/P� �P=”NPB˜he˜1˜1”� he�p=”PRP”/� �/P� �P=”VP˜radiated˜2˜1”� radiated

�p=”VBD”/� �P=”NP-A˜ warmth˜3 ˜1”� �P=”NPB˜warmth˜2˜2”� energy�p=”NN”/� ,

�p=”PUNC,”/� warmth �p=”NN”/� �/P� and�p=”CC”/� �P=”NPB˜nature˜2˜2”� good�p=”JJ”/�

�head� nature �/head� �p=”NN”/� . �p=”PUNC.”/� �/P� �/P� �/P� �/P� nature�/head�

�p=”NN”/� . �p=”PUNC.”/� �/P� �/P� �/P� �/P�

�/context�

�/instance�

Figure 11: Head Word of the Left Sibling Phrase: Parsed structure of the sentence from Figure 10.
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2.4 Resources to Capture the Features

2.4.1 N-gram Statistic Package

Banerjee and Pedersen’s N-gram Statistics Package [4] is utilized to capture unigram and bigram features.

The features are chosen such that the unigrams and bigrams must occur two or more times in the training

data. They must have a log likelihood of 6.635 and they must not have words which are in a pre-decided stop

list. The stop list is a file containing a list of non-content words like,a, the, of, from and at. The programs

count.pl and statistic.pl are utilized with the following options.

count.pl --ngram N --extended --newLine --window WINDOW --histogram WORD-

training.gram2.hist --nontoken NONTOKEN --token TOKEN --stop STOPLIST WORD-

training.gram2.cnt WORD-training.count

statistic.pl --extended --rank RANK --frequency FREQ --score SCORE log.pm

WORD-training.gram2.log WORD-training.gram2.cnt

WINDOW is set to 1 for unigrams and 2 for bigrams. A NONTOKEN file is used to eliminate the parse and

part of speech XML tags in the files.

2.4.2 The Brill Tagger

Part of speech tagging is a pre-requisite for many Natural Language tasks. Apart from the part of speech

of the target word and its surrounding words, syntactically and lexically related words (described in the

following sections) may also be used as features for disambiguation. Many chunkers and parsers which are

used to obtain these syntactic relations utilize the part of speech information for their functioning. Numerous

part of speech taggers such as Ratnaparkhi [65] and QTAG [69] are available commercially and in the public

domain. This thesis utilizes the Brill Tagger [8] [9] [10] to part of speech tag the text. The tagger is widely

used in the research community as it has the following advantages to its merit.

I: It achieves a tagging accuracy of around 95%

II: Source code of the tagger is available. This enables us to better understand the tagger and use it to the

best potential. It allows us to customize it to improve tagging quality based on our requirements.
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III: It is based on a transformation based learning. Thus unlike most other taggers which are probabilistic,

the information captured by learning is easily understood. In case of the Brill Tagger it learns a set of

rules to tag the tokens based on the token itself and its surrounding context.

2.4.3 Collins Parser

Numerous parsers such as the Charniak [14] Parser, MINIPAR [36], Cass Parser [1] [2] and the Collins

Parser [16] [37] were considered for use in the thesis. The Collins Parser [16] [37] was selected for the

following reasons:

I: Source code of the parser is available. This enables us to better understand the parser and use it to the

best potential.

II: It takes as input part of speech tagged text. There are many parsers that take raw sentences as input

and both part of speech tag them and provide a parsed structure. This, however, will mean that we

shall be unable to utilize the Brill Tagger and guaranteed pre-tagging of the head words which we

believe provide high quality part of speech tagging.

III: It has been used widely in the research community to parse text.

As mentioned earlier the Collins Parser takes as input sentences which are part of speech tagged. (13)

illustrates the input format for the parser.

" ����� ��� ����	� ��� ���� ��� � �� �	
������ �� �!	�� �� (13)

A count of the number of words and punctuations in the sentence should be placed at the start of every

sentence. sentence 13 has 6 words in all. The word and the part of speech must be separated by white

space. The output of the parser is in two formats. A horizontal tree format and a bracketed format. Figure

12 depicts the horizontal tree format output while Figure 13 shows the bracketed format of output from the

parser when given the part of speech tagged sentence (13)

This thesis utilizes the bracketed form of the output. Following is description of how one may interpret the

parsed output.
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TOP −33.1527 S −23.6455 NP−A −9.50458 NPB −9.2643 NNP 0 Harry

NNP 0 Potter

VP −11.0818 VBD 0 cast

NP−A −6.22721 NPB −5.85218 DT 0 a

JJ 0 bewitching

NN 0 spell

Figure 12: Sample Horizontal Tree Output of Collins Parser

(TOP~cast~1~1 (S~cast~2~2 (NPB~Potter~2~2 Harry/NNP Potter/NNP )

(VP~cast~2~1 cast/VBD (NPB~spell~3~3 a/DT bewitching/JJ spell/NN ) ) ) )

Figure 13: Sample Bracketed Output of Collins Parser

I: Token and part of speech separated by forward slash.

Example: Harry/NNP

II: The tree structure is captured by parentheses: ( and ).

III: Open parenthesis is followed by a non-terminal (NT)

NT Format : NTlabel headword total#ofChildren constituent#

NT Example : NPB spell 3 3 the/DT ball/N

a. NTlabel specifies the phrase that follows. In the example above, a noun phrase (NPB) follows.

b. headword specifies the head word of the phrase that follows. In the example above,spell is the

head word the noun phrase that follows.

c. total#ofChildren gives the total number of children of the phrase that follows. The children may

be individual words or phrases. In the example above, the noun phrase has 3 children - the wordsa,

bewitching andspell.

d. constituent# specifies the position of the head word in the phrase. In the example above,spell is

the third child.
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2.5 Details of the Brill Tagger and Guaranteed Pre-tagging

2.5.1 The Initial State Tagger

The Brill Tagger part of speech tags sentences in two phases. In the first phase the initial state tag-

ger assigns the most likely part of speech of a word to it. The tagger comes with a LEXICON (LEXI-

CON.BROWN.AND.WSJ) which has a list of around 94,000 words, each followed by its most likely part

of speech tag. A list of other possible parts of speech in which the word might exist is also provided. The

LEXICON was automatically derived from the Penn TreeBank tagging of the Wall Street Journal and the

Brown Corpus. Table 4 depicts a few sample LEXICON entries. Note that there are separate entries for the

different surface forms of a word as shown in the table forfootball, footballs andFootball which are the

different surface forms offootball (L12, L13 and L14).

Table 4: Sample Entries in Brill Tagger’s LEXICON

Type Most Frequent Tag Other Possible Tags

brown JJ NN VB . . . (L1)

chair VB NN . . . (L2)

evening NN JJ . . . (L3)

in IN FW NN . . . (L4)

meeting NN VB . . . (L5)

pretty RB JJ . . . (L6)

sit VB FW VB . . . (L7)

the DT NNP PDT . . . (L8)

this DT PDT . . . (L9)

time NN VB . . . (L10)

will MD VBP NN . . . (L11)

football NN . . . (L12)

footballs NNS . . . (L13)

Football NNP NN . . . (L14)
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Consider the the entry L6 for the surface formpretty. It specifies thatpretty exists most frequently as as

adverb (RB) but may be an adjective (JJ), as well. L11 indicates thatwill is usually a modal (MD), but may

exist as a past participle (VBP) and a noun (NN) in certain sentences. The order of the tags in theOther

Possible Tags column, in this case MD and NN, is irrelevant and holds no significance. Words which do not

occur in the LEXICON will be referred to as words unknown to the tagger or simply unknown words. The

initial state tagger assigns the noun or proper noun tag to them based on whether the word is capitalized or

not. These unknown words are then subject to another set of rules, based on affixes of the word, which may

assign a more suitable part of speech to them. These rules are known as lexical rules. The tagger comes with

a pre-defined lexical rule file - LEXICALRULEFILE. The rules have been automatically deduced based on

the same corpora from which the LEXICON was learned. The rules have keywords such ashaspref, fhassuf

andaddsuf. We have categorized the rules based on these keywords. These keywords with example usage

and explanation of the rule are listed in Table 5.

2.5.2 Final State Tagger

The part of speech assigned to a word by the initial state tagger depends solely on the word itself. The Final

State Tagger may assign a more suitable part of speech to the word based on its context. The context com-

prises of one to three words to the left and right of the word, along with their parts of speech. It does so by

applying a set of contextual rules. The thesis uses the contextual rule file (CONTEXTUALRULEFILE.WSJ)

provided in the standard 1.14 distribution of the Brill Tagger. It consists of 284 rules derived from the Penn

TreeBank tagging of the Wall Street Journal. Table 6 depicts some sample entries in the contextual rule file.

Here is how we may interpret these rules. C1 specifies that if a word is currently tagged as a noun (NN)

and has a determiner (DT) immediately following it, it should be tagged as a verb (VB). C2 tells us that if

a word has been assigned the tag of an adverb (RB) but has an noun (NN) immediately following it, its tag

is changed to an adjective (JJ). Similarly, as per C3, the tag of word is changed from an adjective to a noun

if the next word is a verb. C4 is an example of a rule which utilizes the surface form of a word surrounding

the word under consideration to determine its part of speech. Such rules are known as lexicalized contextual

rules. C4 tells us that if a word is currently tagged to be a noun (NN) and has the wordmeeting immediately

following it, then the tag of the word must be changed to an adjective (JJ).
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Table 5: Sample Rules in Brill Tagger’s LEXICALRULEFILE

Keyword Example Usage Brief Description

haspref dis haspref 3 NN x If a word has the prefixdis,

which is 3 characters in length,

the word is tagged to be a Noun, NN.

fhaspref VBN un fhaspref 2 JJ x If a word has prefixun,

which is 2 characters in length,

and is presently tagged as VBN,

the word is tagged to be an adjective, JJ.

hassuf lent hassuf 4 JJ x If a word has suffixlent,

which is 4 characters in length,

the word is tagged to be an adjective, JJ.

fhassuf NN ient fhassuf 4 JJ x If a word has suffixient,

which is 4 characters in length,

and is presently tagged as a noun NN,

the word is tagged to be an adjective, JJ.

char - char JJ x If the character ‘-’ appears anywhere in the word,

the word is tagged to be an adjective, JJ.

addsuf ment addsuf 4 VB x Let X be the word formed by adding the

charactersly to the word. If X has

an entry in the LEXICON, the original word

is tagged to be an adjective, JJ.

goodright Mr. goodright NNP x If the word appears to the right of the

tokenMr., the word is tagged to be

a proper noun, NNP.

fgoodleft Co. goodleft NN x If the word appears to the left of the

tokenCo., the word is tagged to be

a proper noun, NNP.
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Table 6: Sample Rules in Brill Tagger’s CONTEXTUALRULEFILE

Current Tag New Tag When

NN VB NEXTTAG DT . . . (C1)

RB JJ NEXTTAG NN . . . (C2)

JJ NN NEXTTAG VB . . . (C3)

NN JJ NEXTWD meeting . . . (C4)

2.5.3 Standard Pre-Tagging with the Brill Tagger

Assigning parts of speech to a subset of all the words in the text before tagging the complete text with a

tagger is pre–tagging. We shall refer to such words as pre-tagged words and their assigned parts of speech

as pre-tags. Consider the following scenario. It is already known, by an independent means, that the word

chair in the sentence below is a noun (NN).

��� 
��� ��� � ��	 !�	��� ��������� ���� ���	 (14)

Note: All examples in this section have been taken from Mohammad and Pedersen [42].

The wordchair is pre-tagged to be a noun (NN) to take advantage of this information. When given to the

Brill Tagger, the initial state tagger acts first. The words are assigned their most frequent tags based on

entries for them in the LEXICON. The parts of speech of the pre-tagged words are not changed. The Initial

State Tagger completely ignores the pre-tagged words and does not assign any part of speech to them. Thus,

chair, continues to have a noun (NN) as the attached part of speech.Mona is assigned the tag of a proper

noun (NNP) as it does not have an entry in the LEXICON and is capitalized. The output of the Initial State

Tagger is as shown below.

Mona/NNP will/MD sit/VB in/IN the/DT

!�	���� � ��������� ������� ���	��� (15)
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Unlike the Initial State Tagger which treats pre-tagged words differently the Final State Tagger treats both

pre-tagged words non-pre-tagged words alike. It may change the tag of the word based on its context. Thus,

even though we may pre-tag a word with a certain part of speech, the final state tagger may change the part

of speech associated with the pre-tagged word. Pre-tagging is not guaranteed in the standard distribution of

the Brill Tagger. This can be seen in the output of the Final State Tagger when given (15):

Mona/NNP will/MD sit/VB in/IN the/DT

!�	���� � ��������� ������� ���	��� (16)

We observe thatchair despite being pre-tagged a noun, is tagged to be a verb (VB) by the Brill Tagger. The

change of tag from a noun to verb occurred due to the application of the contextual rule C1 shown in Table

6. The rule specifies that if a word is currently tagged to be a noun and the word immediately following it is

a determiner (DT), then the word has been used as a verb (VB). In the sentence above,chair is followed by

this which is a determiner and was pre-tagged to be a noun (NN), thus satisfying the antecedent of the rule

and assigned the tag corresponding to a verb (VB). This is an error, sincechair has been used as a noun. It

may also be noted that the error is rippled across to the neighboring wordpretty. pretty is tagged an adverb

(RB) by the Initial State Tagger (rule L6 of the LEXICON shown in Table 4). The error in the tagging of

chair has suppressed the application of rule C2 (Table 6) which would have been applied hadchair been

tagged a noun (NN), changing its tag from an adverb (RB) to an adjective (JJ). The change would have been

appropriate aspretty is describing the nounchair, the trait of an adjective.

In the example above, we note that mis-tagging the head word has caused the suppression of a contextual

rule which should have been applied. The converse behavior is also true. The mis-tagging of the pre-tagged

words may trigger contextual rules which should not have been applied. Consider the sentence below where,

once again,chair is pre-tagged to be a noun.

��� 
��� ��� � ��	 ���
 ��������� ���� ���	 (17)

The Initial State Tagger does the following assignment of tags based on entries in Table 4.

Mona/NNP will/MD sit/VB in/IN the/DT
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���
��� ��������� ������� ���	��� (18)

Assignment of part of speech tags by the Final State Tagger:

Mona/NNP will/MD sit/VB in/IN the/DT

���
��� ��������� ������� ���	��� (19)

We observe that once again, the pre–tag ofchair is over-ridden by the Final State Tagger which has assigned

the verb (VB) tag to it by the application of contextual rule C1. Unlike the previous example where the

mis-tagging of the pre-tagged word lead to the suppression of a contextual rule, this error triggers the rule

C3 changing the tag ofbrown from adjective (JJ) to noun (NN). Sincebrown is used as an adjective in this

sentence, we note that mis-tagging the pre-tagged word has yet again lead to an erroneous part of speech

being assigned to its neighbor.

To summarize, the standard distribution of the Brill Tagger allows pre-tagging but may change the pre-tag

based on contextual rules. This transformation will mean that the pre-tag will not affect the selection of part

of speech of its neighbors and the mis-tag may influence the tagging of its neighbors. All these aspects are

undesirable as they may lead to erroneous part of speech tagging. The next section details how we overcome

these drawbacks of the Brill Tagger.

2.5.4 Guaranteed Pre–Tagging

We believe that if the part of speech of a word is known prior to tagging and it is pre-tagged the same, the

pre-tag should be respected all through the tagging process and not be changed to another tag. As shown in

the previous section, mis-tagging the pre-tagged words may lead to erroneous part of speech assignments

to its neighbors as well. Brill Tagger’s Initial State Tagger conforms to this requirement but not the Final

State Tagger. We have devised a way to guarantee pre-tagging [42] by the Brill Tagger. A patch to the Brill

Tagger called theBrillPatch [41] is created which makes a simple change in the working of the Final

State Tagger, which is as follows: the application of contextual rules to a pre-tagged word is suppressed

while continuing to allow the application of contextual rules to all other words. Thus, the Final State Tagger

does not change the tag of a pre-tagged word and uses this pre-tag in the selection of appropriate part of
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speech tags for its neighbors. Consider the example sentences 8 and 17. We observed in the previous section

that even though both sentences had thechair tagged as a noun the standard distribution of the Brill Tagger,

tagged them to be verbs (VB). Further, due to this error, bothpretty andbrown were erroneously tagged.

With guaranteed pre–tagging the output of the initial state tagger remains the same. The output of the Final

State Tagger is as follows:

Mona/NNP will/MD sit/VB in/IN the/DT

!�	������ ��������� ������� ���	��� (20)

Note: All examples in this section have been taken from Mohammad and Pedersen [42].

We observe thatchair continues to have noun (NN) as the assigned part of speech which is the what it was

pre-tagged to. The contextual rule C1 is suppressed when tagging the pre-tagged wordschair, due to the

modification to the Final State Tagger allowing the pre-tag to remain. Aschair remains a noun, contextual

rule C2 is applied topretty changing its tag from an adverb (RB) to an adjective (JJ).

Sentence 17 is assigned the following parts of speech by the patched Brill Tagger:

Mona/NNP will/MD sit/VB in/IN the/DT

���
��� ��������� ������� ���	��� (21)

Once again, the pre–tag ofchair has not been changed. Further, the mis-triggering of contextual rule C2

changing the tag ofbrown from adjective (JJ) to adverb (RB) does not occur.

Thus, guaranteed pre-tagging meets our requirements of allowing the pre-tag to remain and suitably affect

the selection of tags of its neighbors.

2.6 An Optimal Subset of Features

Ideally, we would like to use as many features as possible to represent the data, so that we utilize most of

the available information. However, tools are needed to capture the features and the process of capturing

the features might be costly in terms of time and effort. Secondly, the larger the feature set, the longer the
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time taken to learn the classifier and greater the danger of fragmentation. Since, a classifier is to be learnt

for every word to be disambiguated, the time factor becomes significant. Capturing a multitude of features

from large data sets and learning from them, in a reasonable amount of time thus poses a problem.

Another driving force towards choosing a subset of the possible features is that many of the features appear

to possess the same discriminating information. For example consider the features formed using part of

speech of a word and its surface form. Table 7 shows the various surface forms and possible parts of speech

of the verbtake.

Table 7: Surface Form - Part of Speech Correspondence.

Surface Form Part of Speech

take VB (verb base form)

take VBP (verb present)

takes VBZ (verb present, 3d person)

took VBD (verb past)

taking VBG (gerund)

taken VBN (past participle)

Notice, that there is an almost one to one correspondence between them, suggesting that the information

gained by the exact part of speech may not help much more than surface form. The instances correctly clas-

sified by these features independently may have significant overlap i,e, a number of instances appropriately

tagged by a classifier which uses part of speech of head word, may be correctly tagged by a classifier learnt

from surface form, as well. Of course, the same is not so much the case for other parts of speech. We believe

that there might be other such pairs of knowledge sources as well, where one knowledge source helps cor-

rectly classify, more or less, the same instances as the other. Albeit, it might not be as evident as in the case

of surface form and part of speech. On the other hand, pairs of knowledge sources are good at classifying

significantly complementary sets of instances are also likely to exist. We would thus like to use a minimal

set of features for disambiguation without much loss of accuracy. Learning the amount of redundancy and

complementarity amongst the various features will help in making tradeoffs between accuracy and cost.
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In this thesis we have concluded that the syntactic and lexical features are significantly complementary.

We show that the decision tree created by the combination of the target word part of speech, and the parts

of speech of its two adjacent words performs best in combination with the lexical features unigrams and

bigrams, as opposed to the other combinations of part of speech features. We will show that the part of

speech of the word to the right of the target word is the most useful feature for sense disambiguation amongst

all the individual word part of speech features. We find that nouns benefit from part of speech tags on its

either side while verbs and adjectives are disambiguated better using the part of speech tags of words to their

immediate right. We show that the head word of a phrase is particularly useful to disambiguate adjectives.

The head of the phrase and the head of the parent phrase have proved to be useful for nouns. We show that

guaranteed part of speech tagging, which was employed in the part of speech tagging of all the data, has

helped word sense disambiguation.
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3 EXPERIMENTAL DATA

3.1 Sense Tagged Corpora

Sense tagged data used to train the classifier is created by manual annotation. A person or a team of people

tag each target word with a sense appropriate for that instance. Such manually annotated data is of much

better quality than that amassed through automatic or semi-automatic techniques. However, its creation is

both expensive and time intensive. The Senseval-1 and Senseval-2 exercises, held in the summers of 1998

and 2001 respectively, brought together numerous word sense disambiguation systems from all over the

world to carry out a common evaluation. All the systems were trained and evaluated on a common set

of sense tagged data set created specifically for these exercises. Senseval-1 data has 13,276 sense tagged

instances as training data and 8,452 test instances, ranging over 35 nouns, verbs and adjectives. Senseval-2

data has 8,611 training and 4,328 test instances covering 73 nouns verbs and adjectives. To date, these

corpora boast of being the largest repositories of sense tagged data. Earlier attempts at creating sense tagged

data were concentrated on specific words. Theline, hard, serve andinterest data have considerable amounts

of annotated data corresponding to the respective words. Theline data, created by Leacock [31], has 4,149

sense tagged instances of the nounline. The hard and serve data, created by Leacock, Chodorow and

Miller [31], have 4,337 and 4,378 instances of the adjectivehard and the verbserve, respectively. The

interest data which has 2,476 instances of the nouninterest was created by Bruce and Wiebe [13].

Systems which utilize sense tagged data place their own requirements on the format of the data. An offshoot

of the Senseval-1 and Senseval-2 exercises was that all the systems taking part were designed to accept a

common data format. However, Senseval-1 and Senseval-2 data were in different formats. Since the creation

of new manually annotated data is expensive, it is much more viable to convert the available sense tagged

data into a common format. We chose Senseval-1 and Senseval-2 data formats as much of the present and

future work is being done in them. As a part of this thesis, packages are provided to convert theline, hard,

serve andinterest data into Senseval-1 and Senseval-2 data format. These packages useSval1to2 [3] to

covert the data from Senseval-1 to Senseval-2 data format. TheSval2Check [51] package was developed

to check if the data after conversion to Senseval-2 data format and the original Senseval-2 data, for that

matter, does indeed conform to Senseval-2 data format. The package also checks for duplicate instance IDs

and contexts. Due to these packages, sense tagged data which would otherwise be unusable to many systems
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due to their formats, may now be used by all the systems which accept data in the Senseval-1 or Senseval-2

data format. Theline, hard, serve, interest, Senseval-1 and Senseval-2 data, with over 50 thousand sense

tagged instances covering 112 words, form a significant set of data for our experiments. Details of individual

sources of data follow.

3.1.1 line Data

The line data was created by Leacock et. al. [32] and consists of 4,149 instances that have 2 or 3 lines of

text one of which contains the nounline as the target word. The instances were picked from the Wall Street

Journal Corpus (1987-89) and the the American Printing House for the Blind (APHB) corpus. Each instance

was manually annotated with one of six senses of the nounline from WordNet. The data is provided in six

files; one corresponding to every sense. A sample instance from theline data is provided in Figure 14.

We developed thelineOneTwo [46] package which converts data inline data format to Senseval-1 data

format. The package then usesSval1to2 [3] to convert it from Senseval-1 to Senseval-2 data format. The

sample instance in Senseval-1 and Senseval-2 data formats is shown in Figures 15 and 16. The sense id

assigned to the instances and the distribution of instances is as shown in Table 8. A description of the senses

with example usages ofline in these senses is provided in Table 9.

w7 010:888:�s� The company argued that its foreman needn’t have told

the worker not to move the plank to which his lifeline was tied because

”that comes with common sense.”�/s� �/p�@�p�@�s� The

commission noted, however, that Dellovade hadn’t instructed its employees

on how to secure their lifelines and didn’t heed a federal inspector’s earlier

suggestion that the company install special safety lines inside the A-frame

structure it was building.�/s�

Figure 14: A sample instance from theline Data.

Since there exist instances with multiple sentences such that the the individual sentences are not placed one

per line, a simple sentence detector (part of the package) is used to do the same. The data does not have the
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w7 010:888:

�s� The company argued that its foreman needn’t have told the worker not to move the

plank to which his lifeline was tied because ”that comes with common sense. ”�/s� �@� �/p�

�@� �p� �@� �s� The commission noted, however, that Dellovade hadn’t

instructed its employees on how to secure their lifelines and didn’t heed a federal inspector’s

earlier suggestion that the company install special safety�tag ”cord”�lines�/� inside

the A-frame structure it was building.�/s�

Figure 15: The instance from Figure 14 in Senseval-1 data format.

�lexelt item=”line-n”�

�instance id=”line-n.w7010:888:”�

�answer instance=”line-n.w7010:888:” senseid=”cord”/�

�context�

�s� The company argued that its foreman needn’t have told the worker not to move

the plank to which his lifeline was tied because ”that comes with common sense. ”�/s�

�@� �/p� �@� �p� �@� �s� The commission noted, however, that Dellovade

hadn’t instructed its employees on how to secure their lifelines and didn’t heed a

federal inspector’s earlier suggestion that the company install special safety

�head�lines�/head� inside the A-frame structure it was building.�/s�

�/context�

�/instance�

�/lexelt�

Figure 16: The instance from Figure 14 in Senseval-2 data format.
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Table 8: Senses ofline and Instance Distribution

Sense Sense-Id File No. of Instances Percentage

Product product2 product2 2218 53.5%

Phone phone2 phone2 429 10.3%

Text text2 text2 404 09.7%

Division division2 division2 376 09.1%

Cord cord2 cord2 373 09.0%

Formation formation2 formation2 349 08.4%

TOTAL 4149 100.0%

Table 9: Brief Meaning and Example Usages of the Senses ofline

Sense Meaning Example Usage

Product a product a newline of mid-sized cars

Phone a telephone connection the toll-free helpline

Text spoken or written text one winningline from that speech

Division an abstract division draw noline between work and religion

Cord a thin, flexible object a line tied to his foot

Formation a formation of people or thingspeople waited patiently in longlines
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target wordline explicitly marked. The first occurrence of any of the following surface forms ofline in an

instance, is treated as the target word -line, lines, Line andLines. Table 10 depicts the proportion of such

instances in the different senses. Random spot checks of such instances have indicated that all occurrences

of the nounline in the same instance have the same sense hence picking any one of them as the head word

would have been fine. Gale, Church and Yarowsky’s [22] ‘One Sense Per Discourse’ is also in support of

this assumption.

Table 10: Distribution of instances with multiple possible target words inline data.

Sense Multiple Target Words Total Instances Percentage

Cord 36 373 9.7%

Phone 35 429 8.2%

Product 126 2218 5.7%

Formation 15 349 4.3%

Text 17 404 4.2%

Division 13 376 3.5%

TOTAL 242 4149 5.8%

It should be noted that the instance with IDw7 089:15499: is garbled and hence ignored by the package.

The number of instances of theproduct file converted to Senseval-1 and Senseval-2 data formats is thus

2,217. Additionally, the original data has duplicate instances (instances with the same instance ID and

context) in thedivision file, corresponding to the instance IDs - w8055:13056: and w8056:9116:. These

duplicates have been removed. Thus, the division file in Senseval-1 and Senseval-2 data formats has 374

instances. Due to the removal of these three instances, in all, 4,146 instances ofline data have been converted

to Senseval-2 data format and used in our experiments. The converted data was validated to be in correct

Senseval-2 data format without any other duplicate instance IDs or contexts, by theSval2Check package.

Since its creation, theline data has been used to evaluate numerous word sense disambiguation systems.

Leacock, Towell and Voorhees [32] evaluated their sense resolution system, which used both local context

and the broad topic of discussion, on this data. Pedersen [54] tested his system, an ensemble of Naive

Bayesian classifiers based on co-occurring words, on theline data. The data was used to study the ef-
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fectiveness of EM algorithm and Gibb’s sampling method to extract sense discrimination knowledge from

untagged text by Pedersen [58]. Leacock, Chodorow and Miller [31] applied their sense disambiguation

system which used relations from WordNet, online data.

3.1.2 hard Data

Thehard data was created by Leacock, Chodorow and Miller [31]. It consists of 4,337 instances, each with

a single sentence that has the adjectivehard as the target word. The instances were picked from the San Jose

Mercury News Corpus (SJM) and manually annotated with one of three senses from WordNet. The data

is provided in three files; one corresponding to each sense. A sample instance of thehard data is depicted

in Figure 17. We developed thehardOneTwo [44] package which converts data inhard data format to

Senseval-1 data format. The package then uses Sval1to2 [3] to convert it from Senseval-1 to Senseval-2 data

format. The sample instance in Senseval-1 and Senseval-2 data formats is shown in Figures 18 and 19. The

sense id assigned to the instances and the distribution of instances is as shown in Table 11. A description of

the senses with example usages ofhard in these senses is provided in Table 12.

sjm-274:“ He may lose all popular support , but someone has to kill him

to defeat him and that ’s HARD to do. ”

Figure 17: A sample instance from thehard Data.

sjm-274:

�s� “ He may lose all popular support , but someone has to kill him to

defeat him and that ’s�tag ”HARD1”�HARD�/� to do. ”�/s�

Figure 18: The instance from Figure 17 in Senseval-1 data format.

The data does not have the target word explicitly marked. The first occurrence of any of the following

surface forms ofhard in an instance, is treated as the target word -hard, harder, hardest, HARD, HARDER

andHARDEST. There are instances with two of these surface forms. Table 13 depicts the proportion of such

instances in the different senses. Of all the surface forms mentioned here,hard, harder, HARD, HARDER

andHARDEST exist in thehard data. The package, however, supports the conversion of any data in the

hard data format to Senseval-1 and Senseval-2 data formats even if it hashardest as the head word. It may
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�lexelt item=”hard-a”�

�instance id=”hard-a.sjm-274:”�

�answer instance=”hard-a.sjm-274:” senseid=”HARD1”/�

�context�

�s� “ He may lose all popular support , but someone has to kill him to

defeat him and that ’s�head�HARD�/head� to do. ”�/s�

�/context�

�/instance�

�/lexelt�

Figure 19: The instance from Figure 17 in Senseval-2 data format.

Table 11: Senses ofhard and Instance Distribution

Sense-Id File No. of Instances Percentage

HARD1 hard1.A 3455 79.7%

HARD2 hard2.A 502 11.6%

HARD3 hard3.A 380 08.7%

TOTAL 4337 100.0%

Table 12: Brief Meaning and Example Usages of the Senses ofhard

Sense ID Meaning Example Usage

HARD1 Not easy - difficult its hard to be disciplined

HARD2 Not soft - metaphoric these arehard times

HARD3 Not soft - physical thehard crust
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be noted that there is an occurrence of the typeHARDplastic in the instancesjm-074:. This token is broken

into two tokens,HARD andplastic, which is more likely intended.

The converted data was validated to be in correct Senseval-2 data format by theSval2Check [51] pack-

age. However, it was found to have four pairs of true duplicate instances - instances with the same instance

ID, context and sense ID. These instances correspond to instance IDssjm-206:, sjm-212:, sjm-219: and

sjm-221: in thehard1.A file. These duplicates were removed from the data. Thus, there are 3451 in-

stances corresponding to the HARD1 sense and 4333 instances in all. It was also found that the 349 instance

IDs were being used in 4,186 instances with different contexts, meaning they could not be used as unique

identifiers. Since, instance IDs are to have a one on one mapping with the contexts, we developed a perl

programunique-hard.pl [52] which transformed the instance IDs of the 4,186 instances to 4,186 mu-

tually distinct strings. If there are 4 instances with the instance IDsjm-274:, the program gives them the IDs

sjm-274 1:, sjm-274 2, sjm-274 3 andsjm-274 4, in the order that the instances are found in the file. The

data in Senseval-2 data format created from this pre-processedhard data was validated to have no duplicate

instances or contexts bySval2Check. It was also found to be in correct Senseval-2 data format.hard

data likeline was used to evaluate Leacock, Chodorow, and Miller’s [31] sense resolution system based on

relations from WordNet.

Table 13: Distribution of instances with multiple possible target word inhard data.

Sense Multiple Target Words Total Instances Percentage

HARD1 8 3455 0.2%

HARD2 3 502 0.6%

HARD3 2 380 0.5%

TOTAL 13 4337 0.3%

3.1.3 serve Data

Theserve data was also created by Leacock, Chodorow and Miller [31]. It consists of 5,131 instances, with

two to three sentences, that have the verbserve as the target word. The instances, likeline data, were picked
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from the Wall Street Journal Corpus (1987-89) and the the American Printing House for the Blind (APHB)

corpus. They have been manually annotated with four senses from WordNet. A sample instance of theserve

data is depicted in Figure 20. The instances are tagged with one of the four senses ofserve. The data is

provided in four files; one corresponding to every sense. We developed theserveOneTwo [50] package

which converts data inserve data format to Senseval-1 data format. The package then uses Sval1to2 [3] to

convert it from Senseval-1 to Senseval-2 data format. The sample instance in Senseval-1 and Senseval-2

data formats is shown in Figures 21 and 22. The sense ID assigned to the instances and the distribution of

instances is as shown in Table 14. A description of the senses with example usages ofserve in these senses

is provided in Table 15.

aphb09701001665 The agreement was to be kept secret . Paine saw no objection

to being paid for writing in this vein , but the affair of the Indiana Company had

served as a warning that his motives might not be understood .

Figure 20: A sample instance from theserve Data.

aphb09701001665

�s� The agreement was to be kept secret .�/� �s� Paine saw no objection

to being paid for writing in this vein , but the affair of the Indiana Company had

�tag ”SERVE2”�served�/� as a warning that his motives might not be understood .�/s�

Figure 21: The instance from Figure 20 in Senseval-1 data format.

Table 14: Senses ofserve and Instance Distribution

Sense-Id File No. of Instances Percentage

SERVE10 serve10.A 1814 41.4%

SERVE12 serve12.A 1272 29.1%

SERVE2 serve2.A 853 19.5%

SERVE6 serve6.A 439 10.0%

TOTAL 4378 100.0%
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�lexelt item=”serve-v”�

�instance id=”serve-v.aphb09701001665”�

�answer instance=”serve-v.aphb09701001665” senseid=”SERVE2”/�

�context�

�s� The agreement was to be kept secret .�/� �s� Paine saw no objection

to being paid for writing in this vein , but the affair of the Indiana Company had

�head�served�/head� as a warning that his motives might not be understood .�/s�

�/context�

�/instance�

�/lexelt�

Figure 22: The instance from Figure 20 in Senseval-2 data format.

Table 15: Brief Meaning and Example Usages of the Senses ofserve

Sense ID Meaning Example Usage

SERVE2 Supply with food/means this instrument serves two purposes

SERVE6 Hold an office the department will nowserve a select few

SERVE10 Function as something heserved as the chief inspector

SERVE12 Provide a service selected toserve on a destroyer
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Since, the instances are composed of multiple sentences, such that individual sentences are not placed on

new lines, a simple sentence detector (part of the package) is used to place sentences on new lines. The data

does not have the target word explicitly marked. The first occurrence of any of the following surface forms

of serve in an instance is treated as the target word -serve, served, serves, serving, Serve, Served, Serves

andServing. Table 17 depicts the proportion of such instances in the different senses. Of all the forms

mentioned here,serve, served, serves, Serve and Serves exist in theserve data. The package, however,

supports the conversion of any data in theserve data format to Senseval-1 and Senseval-2 data formats even

if it has Served as the head word. The converted data was validated to be in correct Senseval-2 data format

by theSval2Check package. The program flagged nine pairs of instances (listed in Table 16) to have

the same context and sense ID but differing instance IDs. This is a kind of duplication and gives a little

more weightage to getting these contexts right but not an error in any way. Due to the small number, these

instances have been left as is. No other duplicates were found. Theserve data, likeline andhard was used to

evaluate Leacock, Chodorow, and Miller’s [31] sense resolution system based on relations from WordNet.

Table 16:serve: same context and sense IDs but different instance IDs. Not removed.

.

Instance 1 Instance 2 Sense

serve-v.aphb394000432779 serve-v.aphb210000431310 SERVE10

serve-v.aphb375017582485 serve-v.aphb375023142541 SERVE10

serve-v.aphb375013892448 serve-v.aphb375010852416 SERVE10

serve-v.aphb375014182452 serve-v.aphb375010692414 SERVE10

serve-v.aphb375015942469 serve-v.aphb375029372619 SERVE10

serve-v.aphb375006032359 serve-v.aphb375029372619 SERVE10

serve-v.aphb375022332532 serve-v.aphb375011742424 SERVE10

serve-v.aphb08800006600 serve-v.aphb08800035601 SERVE12

serve-v.w70194875454 serve-v.w702012979487 SERVE12
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Table 17: Distribution of instances with multiple possible target words inserve data.

Sense Multiple Target Words Total Instances Percentage

SERVE10 275 1814 15.2%

SERVE6 19 439 4.3%

SERVE12 48 1272 3.8%

SERVE2 10 853 1.2%

TOTAL 352 4378 8.0%

3.1.4 interest Data

The interest data was created by Bruce and Wiebe [13]. It consists of 2,368 instances. Each with one

sentence that has the nouninterest as the target word. The instances have been selected from the Penn

Treebank Wall Street Journal corpus (ACL/DCI version) and manually annotated with one of the six senses

from the Longman Dictionary of Contemporary English (LDOCE) [59]. Specifically, the instances were

taken from the parsed subset of the corpus. The tokens are tagged with their parts of speech and the parse

information of the sentence is also provided via appropriate bracketing. The data is provided in a single file.

A sample instance of theinterest data is depicted in Figure 23. Since, we would like to use the Brill Tagger

and Collins parser [16] [37] to part of speech tag and parse the data, a version of theinterest data without

the part of speech tags and parse information has been created. A sample of the instance without these tags

is shown in Figure 24. We developed theinterestOneTwo [45] package which converts data ininterest

data format to Senseval-1 data format. The package then uses Sval1to2 [3] to convert it from Senseval-1

to Senseval-2 data format. The sample instance in Senseval-1 and Senseval-2 data formats is shown in

Figures 25 and 26. The sense ID assigned to the instances and the distribution of instances is as shown in

Table 18. A description of the senses with example usages ofinterest in these senses is provided in Table 19.

The data has the target word explicitly marked with an underscore and the sense number immediately fol-

lowing the head word. For exampleinterests 5, whereinterests is the head word and5 is the sense number

corresponding to this instance. The surface forms ofinterest which may be considered as head words are
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[ yields/NNS ] on/IN [ money-market/JJ mutual/JJ funds/NNS ] continued/VBD to/TO

slide/VB ,/, amid/IN [ signs/NNS ] that/IN [ portfolio/NN managers/NNS ] expect

/VBP [ further/JJ declines/NNS ] in/IN [ interest6/NN rates/NNS ] ./.

Figure 23: A sample instance from theinterest Data.

yields on money-market mutual funds continued to slide , amid signs that

portfolio managers expect further declines in interest6 rates .

Figure 24: The sample instance ofinterest data without the part of speech and parse tags.

int1

�s� yields on money-market mutual funds continued to slide , amid signs

that portfolio managers expect further declines in�tag ”interest6”�

interest�/� rates .�/s�

Figure 25: The instance from Figure 24 in Senseval-1 data format.

�lexelt item=”interest-n”�

�instance id=”interest-n.int1”�

�answer instance=”interest-n.int1” senseid=”interest6”/�

�context�

�s� yields on money-market mutual funds continued to slide , amid signs

that portfolio managers expect further declines in�head�interest�/head�

rates .�/s�

�/context�

�/instance�

�/lexelt�

Figure 26: The instance from Figure 24 in Senseval-2 data format.
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Table 18: Senses ofinterest and Instance Distribution

Sense-Id File No. of Instances Percentage

interest6 interest.acl94.txt 1252 52.9%

interest5 interest.acl94.txt 500 21.1%

interest1 interest.acl94.txt 361 15.2%

interest4 interest.acl94.txt 178 07.5%

interest3 interest.acl94.txt 66 02.8%

interest2 interest.acl94.txt 11 00.5%

TOTAL 2368 100.0%

Table 19: Brief Meaning and Example Usages of the Senses ofinterest

Sense ID Meaning Example Usage

interest1 Readiness to give attention internationalinterest in Iraq

interest2 Quality of causing attention to be given tovideo games may be ofinterest

interest3 Activity, etc. that one gives attention to pursue otherinterests

interest4 Advantage, advancement or favor in bestinterest of my client

interest5 A share in a company or business the company hasinterests in real estate

interest6 Money paid for the use of money higherinterest rates
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Table 20:interest: same context and sense IDs but different instance IDs. Not removed.

Instance 1 Instance 2 Sense

interest-n.int2030 interest-n.int2059 interest5

interest-n.int628 interest-n.int2053 interest5

interest-n.int627 interest-n.int2052 interest5

interest-n.int626 interest-n.int2051 interest5

interest-n.int937 interest-n.int1535 interest6

interest-n.int1422 interest-n.int2176 interest6

interest-n.int1899 interest-n.int2254 interest6

interest-n.int161 interest-n.int1899 interest6

interest-n.int161 interest-n.int1548 interest6

interest-n.int161 interest-n.int500 interest6

interest-n.int161 interest-n.int2254 interest6

interest-n.int1548 interest-n.int1899 interest6

interest-n.int1548 interest-n.int2254 interest6

interest-n.int500 interest-n.int1899 interest6

interest-n.int500 interest-n.int1548 interest6

interest-n.int500 interest-n.int2254 interest6

interest-n.int105 interest-n.int106 interest6

interest-n.int80 interest-n.int483 interest6

interest-n.int2004 interest-n.int2005 interest6

interest-n.int936 interest-n.int1534 interest6

interest-n.int361 interest-n.int1420 interest6

interest-n.int361 interest-n.int1136 interest6

interest-n.int1136 interest-n.int1420 interest6
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interest and interests. The converted data was validated to be in correct Senseval-2 data format by the

Sval2Check package. However, likeserve data, the program flagged 23 pairs of instances (listed in Ta-

ble 20 to have the same context and sense ID but differing instance IDs. This is a kind of duplication and

gives a little more weightage to getting such instances right but not an error in any way. Due to the small

number, these instances have been left as is. No other duplicates were found. Bruce and Wiebe [13] per-

formed a case study oninterest data to evaluate their probabilistic disambiguation system based on multiple

contextual features.

3.1.5 Senseval-1 English Lexical Sample Task

The Senseval-1 [28] [29] exercise was conducted in the summer of 1998. Systems were tested on English,

French and Italian corpora. Within each language, a further subdivision was made based on whether the

system would attempt disambiguation of all words in the text or specific ones. The English Lexical Sample

Task corresponds to the latter and is what our disambiguation system does. Unlike, theline, hard, serve and

interest data which are not divided into a test and training corpus, the Senseval-1 data, as provided, exists as

separate test and training corpora. The test corpus has 8,512 instances and the training corpus has 13,276.

Hector, the dictionary built along with the corpora acts as their sense inventory. Each instance is composed

of two to three sentences. A sample instance from Senseval-1 test and training data is shown in Figures 27

and 28, respectively.

800122

Their influences include the Stones and Aerosmith but I thought the

track Hell’s Kitchen had overtones of Tom Petty and Tom Verlaine.

Stage Dolls &dash. Stage Dolls (Polydor) Hailed as Norway’s premier

rock�tag ”532736”�band�/�, they have supported Michael Monroe.

Figure 27: A sample training instance from Senseval-1 data.

Sense tagged data for thirty six nouns, verbs and adjectives of the English language are provided. Seven of

the words have instances corresponding to both noun and verb form. The distribution of these instances in

the test and training data as per part of speech, along with the number of possible senses for each task is
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700003

It is obviously a very exciting project for us though, and it will

allow Kylie to show just how much she has developed over the past

three years. ‘It still�tag�amazes�/�me how much she has

come on and is improving all the time.

Figure 28: A sample test instance from Senseval-1 data.

listed in Table 21. The number of senses is as found in the training data. Instances corresponding to another

five words have also been provided, but the part of speech of the target word in these instances is not known.

These tasks are referred as indeterminates. The distribution of the indeterminates is listed in Table 22. It

may be noted that five of the words (marked in bold in the tables) -disability, rabbit, steering, deaf and

hurdle which have test data, do not have any training data. Thirteen of the words, italicized in the tables,

have a very small number of training examples and no test examples. The instances corresponding to these

words have no bearing on our experiments.

Senseval-1 data has certain mis-tagged sentences. For example, sentences whereSilver is tagged as the

head word, albeit the head word should have been band (see example instance in Figure 29. Other such

examples include brass band,big band andhand shake. There are four such instances in the test data and

62 in the training data. We developed theSenseval1-fix [43] package to correct these bugs. Figure

30 shows the corrected form of the example instance. The data is converted to Senseval-2 data format

using theSval1to2 [3] package. The sample instances in Senseval-2 data format are shown in Figures

31 and 32, respectively. The converted data was validated to be in correct Senseval-2 data format by the

Sval2Check [51] package. However, likeserve and interest data, the program flagged 10 pairs of in-

stances (listed in Table 23) from the test data and 14 pairs of instances (listed in Table 24) to have the same

context and sense ID (in case of training data) but differing instance IDs. This is a kind of duplication and

gives a little more weightage to getting such instances right but not an error in any way. Due to the small

number, these instances have been left as is. Additionally, the training data had two pairs of true duplicates

i,e, same context, same instance ID and the same sense IDs. These correspond to the instancesfloat-v.800287

andfloat-v.800297. The training data was also found to have 131 pairs of instances with the same instance

ID, same context and differing sense IDs. This is due to the waySval1to2 handles instances with mul-

tiple senses. Given an instance in Senseval-1 data format, with three senses,Sval1to2 [3] creates three
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Table 21: Senseval-1: Instance Distribution of Nouns, Verbs and Adjectives

Count Count Count

Nouns Test Train Senses Verbs Test Train Senses Adjectives Test Train Senses

accident 267 1238 8 amaze 70 133 1 brilliant 229 443 11

behavior 279 998 3 bet 178 67 7 deaf 123 – –

bet 275 110 10 bother 209 282 8 floating 47 42 5

disability 160 – – bury 201 290 12 generous 227 308 6

excess 186 178 8 calculate 218 219 5 giant 97 317 6

float 75 63 8 consume 186 61 6 modest 270 383 9

giant 118 344 8 derive 217 266 7 slight 218 380 6

knee 251 417 6 float 229 200 15 wooden 196 362 5

onion 214 26 2 invade 207 49 6 amaze – 183 1

promise 113 589 9 promise 224 1175 7 calculate – 31 2

rabbit 221 – – sack 178 187 3 consume – 11 1

sack 82 99 7 scrap 186 30 2 excess – 73 1

scrap 156 27 9 seize 259 290 11 invade – 8 2

shirt 184 531 8 knee – 2 1 knee – 16 6

steering 176 – – promise – 262 3

bother – 12 4 seize – 4 3

brilliant – 2 2 shirt – 2 1

slight – 5 2

TOTAL 2757 4639 94 TOTAL 2562 3251 91 TOTAL 1407 2825 67
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Table 22: Senseval-1: Instance Distribution of Indeterminates

Count

Indeterminates Test Train No. of Senses

band 302 1330 24

bitter 374 144 11

hurdle 323 – –

sanction 431 96 5

shake 356 991 30

TOTAL 1786 2561 70

instances in Senseval-2 data format corresponding to it. They have the same instance ID and context but

one different sense each.Sval2Check [51] flagged 19 special cases (Table 25) in the training data. Each

special case corresponds to a pair of instances with the same context, different instance ID and different

sense ID. These are cases of true part of speech ambiguity, where the part of speech of the target word could

be at least two different tags for the same context. No other duplicates were found.

800123

(Mrs) BONNIE WORCH Clements Green, South Moreton, Didcot.

THE Wantage�tag ”532747-p”�Silver�/� Band collected all

the trophies in Section C at the Oxford and District Brass

Band Association contest in Oxford recently.

Figure 29: A sample instance from Senseval-1 data which has an erroneous target word tag.

Yarowsky [75] implemented a word sense disambiguation system using hierarchical decision lists and a

rich set of features. The system took part in the Senseval-1 exercise held in the summer of 1998 and

achieved and accuracy of 78.4%. Lee and Ng [33] performed sense disambiguation experiments with a

number of knowledge sources and supervised learning algorithms. Senseval-1 data was used to evaluate the

performance of the various systems. Florian and Yarowsky [21] studied the combination of classifiers to
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800123

(Mrs) BONNIE WORCH Clements Green, South Moreton, Didcot.

THE WantageSilver �tag ”532747-p”�Band�/� collected all

the trophies in Section C at the Oxford and District Brass

Band Association contest in Oxford recently.

Figure 30: he sample instance from Senseval-1 data which has been corrected bySenseval1-fix.

�lexelt item=”band-p”�

�instance id=”band-p.800122”�

�answer instance=”band-p.800122” senseid=”532736”/�

�context�

Their influences include the Stones and Aerosmith but I thought the

track Hell’s Kitchen had overtones of Tom Petty and Tom Verlaine.

Stage Dolls &dash. Stage Dolls (Polydor) Hailed as Norway’s premier

rock�head�band�/head�, they have supported Michael Monroe.

�/context�

�/instance�

�/lexelt�

Figure 31: The Senseval-1 training instance in Senseval-2 data format.

�lexelt item=”amaze-a”�

�instance id=”amaze-a.700003”�

�context�

It is obviously a very exciting project for us though, and it will

allow Kylie to show just how much she has developed over the past

three years. ‘It still�head�amazes�/head�me how much she has

come on and is improving all the time.

�/context�

�/instance�

�/lexelt�

Figure 32: The Senseval-1 Test Instance in Senseval-2 data format.
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Table 23: Senseval-1 test: same context and sense IDs but different instance IDs. Not removed.

Task Instance 1 Instance 2

disability-n disability-n.700001 disability-n.700159

float-v float-v.700198 float-v.700318

float-v float-v.700133 float-v.700299

float-v float-v.700211 float-v.700216

hurdle-p hurdle-p.700158 hurdle-p.700307

invade-v invade-v.700070 invade-v.700148

invade-v invade-v.700036 invade-v.700088

sanction-p sanction-p.700023 sanction-p.700225

sanction-p sanction-p.700345 sanction-p.700352

seize-v seize-v.700019 seize-v.700222

improve performance of word sense disambiguation. They evaluated their system on Senseval-1 data.

3.1.6 Senseval-2 English Lexical Sample Task

The Senseval-2 [20] exercise was conducted in the summer of 2001. Systems were tested on eight lan-

guages besides English. The English Lexical Task for Senseval-2 consists of 4,328 instances for seventy

three nouns, verbs and adjectives. Similar to Senseval-1 data, there exist a separate training and test corpus.

Each instance is composed of one or two paragraphs and the target words are assigned senses from Word-

Net, version 1.7. The training corpus has 8,611 instances in all. Sample training and test instances from the

Senseval-2 data is shown in Figures 33 and 34, respectively. The distributions of instances, as per the part of

speech are depicted in Tables 26 for nouns, 27 for verbs and 28 for adjectives. The number of senses is from

the training data. The data was validated to be in correct Senseval-2 data format by theSval2Check [51]

package. However, likeserve, interest and Senseval-1 data, the program flagged 1 pair of instances (listed

in Table 29) from the test data and 4 pairs of instances (listed in Table 30) from the training data to have the

same context and sense ID (in case of training data) but differing instance IDs. This is a kind of duplication
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Table 24: Senseval-1 training: same context and sense IDs but different instance IDs. Not removed.

Task Instance 1 Instance 2 Sense

accident-n accident-n.800754 accident-n.801240 532675

band-p band-p.800971 band-p.800983 532745

excess-n excess-n.800050 excess-n.800113 512404

float-v float-v.800007 float-v.800095 523224

generous-a generous-a.800009generous-a.800270512309

knee-n knee-n.800025 knee-n.800174 516619

promise-a promise-a.800536 promise-a.801100 537614

promise-n promise-n.801208 promise-n.801758 537626

promise-n promise-n.801345 promise-n.801766 537566

promise-n promise-n.800723 promise-n.802037 538411

promise-v promise-v.801094 promise-v.801496 537527

seize-v seize-v.800113 seize-v.800298 507297

shake-p shake-p.800481 shake-p.800977 504584

shirt-n shirt-n.800244 shirt-n.800283 506479
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Table 25: Senseval-1 training: same context but different sense IDs and instance IDs. Not removed.

INSTANCE 1 INSTANCE 2

Task Instance Sense Task Instance Sense

bet-v bet-v.800135 519907 bet-n bet-n.800135 519925

brilliant-a brilliant-a.800178 brilliant-a.999997 brilliant-n brilliant-n.800178 brilliant-n.999997

float-v float-v.800068 523221 floating-a floating-a.800068 523373

float-v float-v.800008 523310 floating-a floating-a.800008 523373

float-v float-v.800181 523310 floating-a floating-a.800181 523419

giant-a giant-a.800294 giant-a.999997 giant-n giant-n.800294 giant-n.999997

invade-v invade-v.800044 invade-v.999997 invade-a invade-a.800044 invade-a.999997

promise-a promise-a.801790 promise-a.999997 promise-v promise-v.801790 promise-v.999997

promise-a promise-a.801790 promise-a.999997 promise-n promise-n.801790 promise-n.999997

promise-n promise-n.801790 promise-n.999997 promise-v promise-v.801790 promise-v.999997

promise-a promise-a.800340 promise-a.999997 promise-v promise-v.800340 promise-v.999997

promise-a promise-a.800340 promise-a.999997 promise-n promise-n.800340 promise-n.999997

promise-n promise-n.800340 promise-n.999997 promise-v promise-v.800340 promise-v.999997

promise-a promise-a.801997 promise-a.999997 promise-v promise-v.801997 promise-v.999997

promise-a promise-a.801997 promise-a.999997 promise-n promise-n.801997 promise-n.999997

promise-n promise-n.801997 promise-n.999997 promise-v promise-v.801997 promise-v.999997

seize-v seize-v.800213 seize-v.999997 seize-a seize-a.800213 seize-a.999997

sack-v sack-v.800188 sack-v.999997 sack-n sack-n.800188 sack-n.999997

sack-v sack-v.800108 sack-v.999997 sack-n sack-n.800108 sack-n.999997
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as described earlier. Due to the small number, these instances have been left as is. No other duplicates were

found.

�lexelt item=”art.n”�

�instance id=”art.40001” docsrc=”bncACN 245”�

�answer instance=”art.40001” senseid=”art�context�

Their multiscreen projections of slides and film loops have featured in orbital

parties, at the Astoria and Heaven, in Rifat Ozbek’s 1988/89 fashion shows, and

at Energy’s recent Docklands all-dayer.

From their residency at the Fridge during the first summer of love, Halo used

slide and film projectors to throw up a collage of op-art patterns, film loops of

dancers like E-Boy and Wumni, and unique fractals derived from video feedback.

&bquo;We’re not aware of creating a visual identify for the house scene, because

we’re right in there.

We see a dancer at a rave, film him later that week, and project him at the next

rave.&equo;

Ben Lewis Halo can be contacted on 071 738 3248.

�head�Art�/head�you can dance to from the creative group called Halo

�/context�

�/instance�

�/lexelt�

Figure 33: A sample training instance from Senseval-2 data.

Klein, Toutanova and Ilhan [30] developed a system for word sense disambiguation using and ensemble

of heterogeneous classifiers. They evaluate their system using Senseval-2 data. The system achieved an

accuracy of 61.7% in the Senseval-2 event. Along with Senseval-1 data, Senseval-2 data was used by Lee

and Ng [33] in their experiments with a number of knowledge sources and supervised learning algorithms.

Yarowsky and Florian [76] used the Senseval-2 data to compare sense disambiguation using six supervised

learning algorithms and variations of the data representation. Pedersen [57] studies the the disambiguation of

Senseval-2 data using ensemble decision trees. Mohammad and Pedersen [42] study the affect of guaranteed
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�lexelt item=”art.n”�

�instance id=”art.40010” docsrc=”bncAHA 533”�

�context�

It is fair to say that nothing Frank has achieved as a film-maker approaches the

heights he scaled with The Americans. [/p] [p]

The 50-minute film he made for Arena suggests why: Last Supper &mdash; Frank on

Frank looks like a parody of the excesses of Sixties avant-garde film-making.

On an empty lot between two Harlem streets, a group of people arrive for an

outdoor party to celebrate the new publication of an unnamed author.

Initialy they make respectful small-talk about him, but their comments grow

increasingly resentful as it becomes apparent he will not show up. [/p] [p]

Some events in Last Supper appear roughly improvised.

Yet hefty chunks of dialogue are obviously &mdash; and rather archly &mdash; staged.

People say things like: &bquo;You ever notice how all�head�art�/head�

focuses on people in trouble?&equo;

�/context�

�/instance�

�/lexelt�

Figure 34: A sample test instance from Senseval-2 data.
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Table 26: Instance distribution of Nouns in Senseval-2 data.

Count Count

Word Test Train No. of Senses Word Test Train No. of Senses

art 98 196 19 grip 51 102 7

authority 92 184 11 hearth 32 64 5

bar 151 304 22 holiday 31 62 8

bum 45 92 6 lady 53 105 10

chair 69 138 8 material 69 140 17

channel 73 145 10 mouth 60 119 12

child 64 129 9 nation 37 75 5

church 64 128 7 nature 46 92 9

circuit 85 170 16 post 79 157 15

day 145 289 18 restraint 45 91 9

detention 32 63 6 sense 53 107 9

dyke 28 58 4 spade 33 65 8

facility 58 114 6 stress 39 79 7

fatigue 43 85 8 yew 28 57 4

feeling 51 102 5

TOTAL 1754 3512 280
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Table 27: Instance distribution of Verbs in Senseval-2 data.

Count Count

Word Test Train No. of Senses Word Test Train No. of Senses

begin 280 557 8 match 42 86 8

call 66 132 23 play 66 129 25

carry 66 132 27 pull 60 122 33

collaborate 30 57 2 replace 45 86 4

develop 69 133 15 see 69 131 21

draw 41 82 32 serve 51 100 12

dress 59 119 14 strike 54 104 26

drift 32 63 9 train 63 125 9

drive 42 84 15 treat 44 88 6

face 93 186 7 turn 67 131 43

ferret 1 2 1 use 76 147 7

find 68 132 17 wander 50 100 4

keep 67 133 27 wash 12 25 13

leave 66 132 14 work 60 119 21

live 67 129 10

TOTAL 1806 3566 453
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Table 28: Instance distribution of Adjectives in Senseval-2 data.

Count

Word Test Train No. of Senses

blind 55 108 9

colourless 35 68 3

cool 52 106 8

faithful 23 47 3

fine 70 142 13

fit 29 57 4

free 82 165 19

graceful 29 56 2

green 94 190 19

local 38 75 3

natural 103 206 25

oblique 29 57 14

simple 66 130 6

solemn 25 52 2

vital 38 74 8

TOTAL 768 1533 138

Table 29: Senseval-2 test data instances with the same context and sense IDs but different instance IDs. Not

removed.

Task Instance 1 Instance 2

collaborate collaborate.063 collaborate.077
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Table 30: Senseval-2 training: same context and sense IDs but different instance IDs. Not removed.

Task Instance 1 Instance 2 Sense

collaborate.v collaborate.002 collaborate.005 collaborate%2:41:00::

collaborate.v collaborate.001 collaborate.036 collaborate%2:41:01::

dress.v dress.001 dress.027 dress%2:29:01::

wander.v wander.000 wander.044 wander%2:38:02::

part of speech pre-tagging of the head words of Senseval-2 data on the part of speech tags assigned to

surrounding words by the Brill Tagger.

3.2 Pre-processing of Data for the Brill Tagger

Data in Senseval-2 format is part of speech tagged using the Brill Tagger [8] [9] [10]. The tagger requires

the data to adhere to certain requirements in order to achieve accurate tagging. These requirements are listed

below.

Tagger Req-I: All tokens constituting the data must be either words, numbers, punctuations or braces. The

data must not contain tokens such as XML and SGML tags.

Tagger Req-II: One line per sentence.

Tagger Req-III: There should be no new line character within a sentence.

Tagger Req-IV: Apostrophe is to be tokenized as shown: Einstein’s -� Einstein ’s

Additionally, we believe that the quality of tagging will improve, if a few words are annotated with their

correct part of speech. These words will be referred to as pre-tagged words. Intuitively, given that a word is

tagged with the correct part of speech, there is a higher probability that the surrounding words are correctly

tagged, since, the tag of a word is to some extent dependent on its neighbors. The part of speech tagged data

is fed to the Collins parser [16] [37] to obtain parsed sentences. The parser places its own requirements on
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the data to be parsed, one of them being that the number of tokens per sentence must not exceed 120.

Theline, hard, serve, interest and Senseval-1 data in the Senseval-2 data format and the original Senseval-2

data do not adhere to one or more of these requirements. Senseval-1 and Senseval-2 data have sentences

which are on two or more lines. They also have instances with multiple sentences on the same line. The

line, hard, serve andinterest data have the sentence boundaries demarcated with�s� and�/s� tags. The

line, hard, serve, interest, Senseval-1 and Senseval-2 data, each consist of a few sentences which have more

than 120 tokens. Additionally, the indeterminates in Senseval-1 data apart, the broad part of speech of the

target words in all these instances is known. Therefine [49] package has been developed to process any

data in Senseval-2 data format in order to make it suitable for tagging by the Brill Tagger and parsing by

the Collins parser. It may also be used to pre-tag the target words with appropriate part of speech tags. Its

functions are listed below. Details follow:

I Restore split sentences

II Eliminate the�s� and�/s� sentence boundary markers and place sentences on new lines.

III Detect multiple sentences on the same line and place them on new lines.

IV Pre-tag head words based on surface form.

V Supersede the surface form pre-tag with pre-tags suggested by the user for specific instances.

VI Replace contexts of user specified instance IDs with user specified instances.

3.2.1 Sentence Boundary

A pre-requisite in using the Brill Tagger is that there must be one sentence per line. The Senseval-1 and

Senseval-2 data do not adhere to this requirement completely.refine [49] may be used to concatenate the

split sentences. The lines to be concatenated are specified by their line numbers in the source text file. The

lines files containing this information for Senseval-1 and Senseval-2 training and evaluation data has been

created by manual inspection.
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Split sentences apart, Senseval-1 and Senseval-2 data have certain instances with multiple sentences on the

same line. This too does not conform to requirement II of the Brill Tagger. A simple sentence boundary

detecting program, which is a part ofrefine [49] is used to generate copies of the training and evaluation

data with one sentence per line.

Theline, hard, serve andinterest data in the Senseval-2 data format do not have instances with split sentences

or improper sentence boundary demarcation. However, they do not all have one sentence per line. The

sentences are separated from each other by sentence boundary markers�s� and �/s� tags. Since, this

does not conform with requirement 2 of the Brill Tagger,refine [49] is used to eliminate sentence boundary

markers and place one sentence per line.

3.2.2 Pre-Tagging

The Brill Tagger is used to part of speech tag the data. The tagger works in two phases - initial state tagger

and final state tagger. The initial state tagger assigns each word its most likely tag based on information it

finds in a LEXICON. The final state tagger may transform this tag into another based on a set of contextual

rules. A useful facility provided by the Brill Tagger ispre–tagging, which is the act of assigning parts of

speech to tokens in a text before tagging the complete text with a tagger. We shall call the part of speech of

the word being pre-tagged, the pre–tag. Since, we are provided with the part of speech of the head words

in the data we use, this provides an effective mechanism to correctly tag the head words and use these tags

to better tag the tokens around. The latter gains prominence by the nature of tags which are dependent, to

a certain extent, on the tags of the surrounding tokens. All target words inline andinterest data are nouns.

Similarly, hard data target words are adjectives andserve data target words are verbs. The part of speech

of the Senseval-1 and Senseval-2 data instances is also known.refine [49] has been used to make use

of this information and appropriately pre-tag the head words ofline, hard, serve, interest, Senseval-1 and

Senseval-2 data. The pre-tagged data created byrefine [49] is in a format acceptable by the Brill Tagger.

The pre-tagged sample instance fromline data is shown in Figure 35. The target wordlines is pre-tagged to

be a plural noun (NNS).

The pre-tagging may be done at two levels. Firstly, all head words are pre-tagged based on their surface

form. For example, the various surface forms ofeat for example areeat, ate, eaten andeats and occurrences
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�instance id=”line-n.w7010:888:”�

�answer instance=”line-n.w7010:888:” senseid=”cord”/�

�context�

�s� The company argued that its foreman needn’t have told the worker not to move the

plank to which his lifeline was tied because ”that comes with common sense. ”�/s� �@�

�@� �p� �@� �s� The commission noted, however, that Dellovade hadn’t instructed

its employees on how to secure their lifelines and didn’t heed a federal inspector’s earlier

suggestion that the company install special safety�head�lines����� �/head� inside the

A-frame structure it was building.�/s� �/context�

�/instance�

Figure 35: Pre-taggedline data instance in Senseval-2 data format.

in different surface forms may be pre-tagged to different parts of speech. The package uses a file with a

list of the surface forms and their most likely part of speech. The file is analogous to the LEXICON file

of the Brill Tagger. Each token within the head tags is considered for pre-tagging. If there exists an entry

for the head word, it is pre-tagged with the associated most likely part of speech. It may be noted that head

words with apostrophe are first tokenized as shown in Table 31 before pre-tagging. This is in accordance

with requirement 4 of the Brill Tagger.

Table 31: Pre-tagging of head words with apostrophe

Head word fragment

Original fragment �head�band’s�/head�

Tokenization �head�band ’s�/head�

Pre-tagging �head�band//NN ’s�/head�

The surface form based pre-tagging files have been created manually for theline, hard, serve, interest,

Senseval-1 and Senseval-2 data. It may be noted that the broad part of speech of the head words in the

line, hard, serve, interest, Senseval-1 and Senseval-2 data are known. For example,line is a noun,serve is

a verb and natural - from the Senseval-2 data - is an adjective. The exact part of speech corresponding to
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various surface forms has been chosen considering the broad part of speech. In case of nouns, the surface

form which is the same as the root word is tagged as acommon noun (NN). For example, the surface form

authority matches the root form of the word, which isauthority as well. Hence, head words whose surface

form is authority are tagged to be acommon noun. Surface forms which correspond to the plural form of

the word, for exampleauthorities, are tagged asplural nouns (NNS). Surface forms which are capitalized

are tagged asproper noun (NNP) orplural proper noun (NNPS) depending on whether it matches the root

word or corresponds to the plural form of the word. Examples would beAuthority as inNational Aviation

Authority andAuthorities as inAmerican Association of Port Authorities. Verbs have been pre-tagged into

five parts of speech. Verbs which match the root form are tagged asbase form verb (VB), for example

take. Surface forms which correspond to the past tense such astook are pre-tagged asverb past (VBD).

Surface forms which end ining and correspond to the gerund are taggedgerund (VBG), for exampletaking.

The past participle (VBN) tag is assigned to surface forms such astaken. Surface forms which are used

when referring to a third person such astakes are taggedverb present, 3rd person (VBZ). The

adjectives are tagged asadjectives (JJ). It may be noted that there exists verbs with the same past tense form

and past participle form, for example, consider the verbcall, both past and past participle form have the

same surface formcalled. This may be a cause of error but the authors believe this is a small price to pay

for the benefits of pre-tagging. Without pre-tagging head words which we know belong to a certain broad

part of speech may be tagged into a totally different class altogether. Pre-tagging eliminates this problem.

All head word instances with the same surface form are tagged alike by the surface form based pre-tagging.

Besides the special case of verbs mentioned above, this may cause errors in case of nouns as well. Proper

nouns are identified based on capitalization, but words which are not proper nouns are capitalized when

they are at the start of the sentence. Thus, in the case of capitalized nouns which are at the start of a

sentence, there is no way of determining the correct pre-tag without manually examining the sentence. The

second level of pre-tagging involves overriding the surface form based pre-tag of specific instances by user

specified pre-tag. The pre-tag to be assigned to the instance and line number of the head word in the data

file are specified in thespecific pre-tag file. The context of all capitalized noun head words in the Senseval-1

and Senseval-2 data has been manually examined to determine the most suitable part of speech of the head

word. Thespecific pre-tag file for these instances has been created and provided with the package in order

to facilitate duplication of the pre-tagging.
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refine [49], as mentioned above, has many functions which make the data more suitable for part of speech

tagging by the Brill Tagger. However, the processed files are still in Senseval-2 data format. The next section

describes the pre-processing of data in Senseval-2 data format to produce text files acceptable by the Brill

Tagger.

3.2.3 Senseval-2 Format to the Format Acceptable by Brill Tagger

Data in Senseval-2 format has numerous XML and SGML tags. These tags are not acceptable inputs to

the Brill Tagger. If left as is, the tagger will assign part of speech tags to them as well, instead of ignoring

them. These tags will then affect the selection of tags of surrounding words, which is undesirable. As part

of this thesis we developed theposSenseval [48] package which may be used to part of speech tag any data

in Senseval-2 data format. It has a pre-processing stage which involves the following steps:

I Removal of XML, SGML tags and other non-contextual information such as representation of vocal

sounds and typographical errors.

II Conversion of character references to appropriate symbols -&lt; to�

III Removal of all other character references.

IV Appropriate tokenization. Special consideration forapostrophe - Einstein’s to Einstein ’s. Hyphenated

words likepassers-by andavant-garde, are not to be split up.

In order to achieve the best results, the Brill Tagger must be given only contextual tokens. Thus, all XML

and SGML tags, which are not contextual in nature, are eliminated. The XML tags are identified by the

presence of angular brackets around them. For example�head�. The SGML tags are identified as tokens

with square braces around them. For example[/quote]. Character references are a way to refer to a character

which is independent of the way the actual character is entered. For example:&lsqb; refers to the left square

bracket [ and&rsqb; to [. Such references are useful to differentiate between different usages of the same

character. The symbol ‘[’ for example may be used as part of the sentence or as part of an SGML tag. As

per the Senseval-2 data format, character references are used to refer to those symbols which may be used

as part of XML or SGML tags. ‘�’ and ‘�’ are the other two symbols which must be entered as character
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references, if part of a sentence. ‘&lt;’ and ‘&gt;’ are their corresponding character references, respectively.

Senseval-1 data has square braces which should have ideally been specified by their corresponding character

references. They are converted to corresponding character references in the pre-processing step - [ to&lsqb;

and ] to&rsqb;. These exceptions are identified by the presence of multiple tokens within the square braces

and the conversion to appropriate character references is done. Senseval-1 data has certain non-contextual

information such as representations of vocal sounds and typographical errors within curly braces. For exam-

ple �vocal sound=”um”� and�typo bad=”amazes”,good=”�head�amazed�/head�”�. All such tokens

are eliminated before tagging. In case of typographical errors, the correctly spelled token is put in place of

the deleted tokens. As with the square braces, if the curved braces are a part of the context, they are to be

specified by their appropriate character references -&lcub; and&rcub; represent left and right curly braces,

respectively.

TheLEXICON provided with the Brill Tagger has a list of tokens and their most likely part of speech tag. The

other possible parts of speech in which the word might occur are also specified. Table 32 lists some example

entries. During the first phase of tagging, the tagger assigns each word the most frequent tag associated

with it as picked up from this file. Words which do not have entries in the LEXICON are assigned proper

nouns. The LEXICON does not have entries for character references. Thus, the tagger has no information

regarding its most likely tag. It does however, have entries for symbols corresponding to symbols which

correspond to certain character references. These entries are depicted in Table 33. It may be noted that even

though certain symbols need not be specified as character references, they may still be done so in the data.

Such character references if found in the text are converted back to their appropriate symbols. All other

character references are eliminated. It may be noted that the LEXICON provided by the Brill Tagger has

been automatically derived and hence has irregular coverage.

Yet another important step of the pre-processing is tokenization. The Brill Tagger requires all words and

punctuations to be space separated - requirement 4. The only exception being an apostrophe which is

tokenized differently. The desired tokenization is exemplified below.

Before Tokenization:Einstein’s mass and energy formula was revolutionary; or was it relativity?

After Tokenization:Einstein ’s mass and energy formula was revolutionary ; or was it relativity ?
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Table 32: Example entries in the LEXICON

Type Most Frequent Tag Other Possible Tags

brown JJ NN VB

meeting NN VBG

meetings NNS –

Table 33: Entries in the LEXICON corresponding to certain character references.

LEXICON Entry

Character Reference Type Most Frequent Tag Other Possible Tags

&amp; & CC NNP SYM

&apos; ’ POS NN NNPS ”

&lcub; � (

&rcub; � )

&lsqb; [ (

&rsqb; ] )

&lsquo; ‘ “

&rsquo; ’ POS NN NNPS ”

&lt; � SYM

&gt; � SYM NN

&ndash; - :

&num; # #
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It may be noted that as part of tokenization, hyphenated words likepassers-by and andavant-garde, are not

split up. This is because, by hyphenation these words take on a special meaning and are to be treated as

one token. The text file created after the pre-processing conforms to the requirements of the Brill Tagger

ensuring reliable part of speech tagging. The example instance in Senseval-2 data format from Figure 33

after pre-processing is shown in Figure 36. This sentence is fed directly to the Brill Tagger.

Their multiscreen projections of slides and film loops have featured in orbital

parties , at the Astoria and Heaven , in Rifat Ozbek ’s 1988 / 89 fashion shows

, and atEnergy ’s recent Docklandsall-dayer .

From their residency at the Fridge during the first summer of love , Halo used

slide and film projectors to throw up a collage of op-art patterns , film loops

of dancers likeE-Boy and Wumni , and unique fractals derived from video

feedback .

” We ’re not aware of creating a visual identify for the house scene ,

becausewe ’re right in there .

We see a dancer at a rave , film him later that week , and project him at the

next rave . ”

Ben Lewis Halo can be contacted on 071 738 3248 .

Art//NNP you can dance to from the creative group called Halo

Figure 36: Senseval-2 instance from Figure 33 after being pre-processed byposSenseval making it

suitable for the Brill Tagger.

3.3 Part of Speech Tagging

The pre-processed data described in the previous section is given to the Brill Tagger which part of speech

tags it. The part of speech tagged instance from Figure 36 is shown in Figure 37.
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Their/PRP$ multiscreen/JJ projections/NNS of/IN slides/NNS and/CC film/NN

loops/NNS have/VBP featured/VBN in/IN orbital/JJ parties/NNS ,/, at/IN the/DT

Astoria/NNP and/CC Heaven/NNP ,/, in/IN Rifat/NNP Ozbek/NNP ’s/POS 1988/CD //NN

89/CD fashion/NN shows/VBZ ,/, and/CC at/IN Energy/NNP ’s/POS recent/JJ

Docklands/NNS all-dayer/JJR ./.

From/IN their/PRP$ residency/NN at/IN the/DT Fridge/NNP during/IN the/DT first/JJ

summer/NN of/IN love/NN ,/, Halo/NNP used/VBD slide/NN and/CC film/NN

projectors/NNS to/TO throw/VB up/IN a/DT collage/NN of/IN op-art/JJ patterns/NNS

,/, film/NN loops/NNS of/IN dancers/NNS like/IN E-Boy/NNP and/CC Wumni/NNP ,/,

and/CC unique/JJ fractals/NNS derived/VBN from/IN video/NN feedback/NN ./.

”/” We/PRP ’re/VBP not/RB aware/JJ of/IN creating/VBG a/DT visual/JJ identify/VB

for/IN the/DT house/NN scene/NN ,/, because/IN we/PRP ’re/VBP right/NN in/IN

there/RB ./.

We/PRP see/VBP a/DT dancer/NN at/IN a/DT rave/VBP ,/, film/NN him/PRP later/RB

that/DT week/NN ,/, and/CC project/NN him/PRP at/IN the/DT next/JJ rave/VBP ./. ”/”

Ben/NNP Lewis/NNP Halo/NNP can/MD be/VB contacted/VBN on/IN 071/CD 738/CD

3248/CD ./.

Art//NNP you/PRP can/MD dance/VB to/TO from/IN the/DT creative/JJ group/NN

called/VBN Halo/NNP

Figure 37: Part of speech tagged instance from Figure 36
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3.4 Part of Speech Tagging - Post Processing

Once, the data has been part of speech tagged by the tagger, the pos-processing phase involves three steps:

I: Converting the tokens which have been part of speech tagged to lower case.

II: Putting back the XML and SGML tokens, which were removed during pre-processing.

III: Putting back the character references eliminated during pre-processing.

IV: Placing the part of speech tags in angular braces.

V: Checking if any of the pre-tags assigned to the head words, have been overridden to other tags by the

tagger.

3.4.1 Capitalization

Capitalization is an important cue, which the Brill Tagger uses to correctly part of speech tag the data.

Capitalized nouns are more likely to be proper nouns than not. However, many a natural language tools

like word sense disambiguation systems, might want to treat the different capitalizations as the same token.

For example if theindustrial plant helps identify the correct sense ofplant, so doesIndustrial plant or

INDUSTRIAL PLANT. Thus, as part of the post processing, all tokens which were part of speech tagged are

converted to lower case.

3.4.2 XML’izing

As a matter of principle,posSenseval [48] does not permanently delete any of the tokens in the data

file. All the tokens, XML and SGML tags, which are eliminated as part of the pre-processing step are

put back into the data file at corresponding positions. The XML tags like the instance ID tag, context

tag and head word tags are basic components of the Senseval-2 data format and have to be placed back

exactly as they were in order for the final file to conform to the data format. The latter is desired since,

our disambiguation system apart, any other system which accepts data in Senseval-2 data format may use

the part of speech tagged data created. The SGML tags are not being used by our disambiguation system.
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These tags are bracketed with angular braces so as to XML’ize them, before putting them back. For example

[caption] is put back as�[caption]�. This is useful since programs which would like to skip XML and

SGML tokens may do so, simply, by ignoring what is inside the angular braces. The representations of

vocal sounds and typographical errors which have been encoded in Senseval-1 data in curly braces, are

also put back after bracketing them in angular braces. For example,�vocal sound=”um”� i sput back as

��vocal sound=”um”��. The character references whose corresponding symbols did not have entries in

Brill Tagger’s LEXICON and which were removed during pre-processing are also put back after bracketing

with angular braces. For example,&thorn; is put back as�&thorn;�.

As seen in Figure 37, the Brill Tagger attaches the part of speech to each token with a forward slash. Since,

the part of speech tags, like the XML and SGML tokens gives information about the tokens and are not part

of the sentence, they are XML’ized as well. The sample instance from Figure 37 after putting back the post-

processing is depicted in Figure 38. Note: Only a part of the instance is shown due to space constraints. The

p immediately following the ‘�’ symbol suggests that this XML tag has the part of speech of the previous

token.

3.4.3 Examining the Pre-tags

The head words were pre-tagged with their parts of speech before giving the data to the Brill Tagger. Casual

examination of the tagged data revealed that some of the pre-tags were changed to other parts of speech and

in many cases a change not just within the broad part of speech such as VBD to VBZ but more radical as in

across the broad parts of speech from verb to noun. We shall refer to such erroneous tags as mis-tags and the

errors as radical errors when the change is across a broad part of speech and subtle errors when the change

is within a broad part of speech. For example from VBD to NN and VBD to VBZ, respectively. Our word

sense disambiguation system uses the parts of speech of words surrounding the target word. An error in the

part of speech of the target word will likely cause an error in the part of speech of the surrounding words,

affecting sense disambiguation. Additionally, other tools which base their results on the parts of speech will

be affected as well (in our case the Collins parser). The gravity of the matter lead to a thorough examination

of the number of such mis-taggings. Table 34 lists the number of such errors and the percentage of errors

with respect to the total number of target words.

Since, the quality of the part of speech tagging, especially of the head word and those surrounding it is vital,
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�lexelt item=”art.n”�

�instance id=”art.40001” docsrc=”bncACN 245”�

�answer instance=”art.40001” senseid=”art�context�

” �p=”””/ � we�p=”PRP”/� ’re �p=”VBP”/� not�p=”RB”/� aware�p=”JJ”/� of �p=”IN”/�

creating�p=”VBG”/� a�p=”DT”/� visual�p=”JJ”/� identify�p=”VB”/� for �p=”IN”/� the

�p=”DT”/� house�p=”NN”/� scene�p=”NN”/� ,�p=”,”/� because�p=”IN”/� we�p=”PRP”/�

’re �p=”VBP”/� right�p=”NN”/� in �p=”IN”/� there�p=”RB”/� . �p=”.”/�

we�p=”PRP”/� see�p=”VBP”/� a�p=”DT”/� dancer�p=”NN”/� at�p=”IN”/� a�p=”DT”/� rave

�p=”VBP”/� ,�p=”,”/� film �p=”NN”/� him�p=”PRP”/� later�p=”RB”/� that�p=”DT”/� week

�p=”NN”/� ,�p=”,”/� and�p=”CC”/� project�p=”NN”/� him�p=”PRP”/� at�p=”IN”/� the

�p=”DT”/� next�p=”JJ”/� rave�p=”VBP”/� . �p=”.”/� ” �p=”””/ �

�[hi]� ben�p=”NNP”/� lewis�p=”NNP”/� �[/hi]� halo�p=”NNP”/� can�p=”MD”/� be

�p=”VB”/� contacted�p=”VBN”/� on�p=”IN”/� 071�p=”CD”/� 738�p=”CD”/� 3248

�p=”CD”/� . �p=”.”/�

�[ptr]��[/p]��[caption]��head�art�p=”NNP”/��/head� you�p=”PRP”/� can�p=”MD”/�

dance�p=”VB”/� to�p=”TO”/� from�p=”IN”/� the�p=”DT”/� creative�p=”JJ”/� group

�p=”NN”/� called�p=”VBN”/� halo�p=”NNP”/� �[/caption]��[/div2]��[div2]� �[head]�

�/context�

�/instance�

�/lexelt�

Figure 38: The instance from Figure 37 after post-processing.
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Table 34: Radical and Subtle errors in the part of speech tags of the head words.

Sense-Tagged Data Target Words Radical Errors Percentage Subtle Errors Percentage

Senseval-2 Training 8611 347 4.0% 746 8.7%

Senseval-2 Test 4328 185 4.3% 398 9.2%

Senseval-1 Training 13276 353 2.7% 1165 8.8%

Senseval-1 Test 8452 209 2.5% 821 9.7%

line 4149 85 2.0% 278 6.7%

hard 4337 145 3.3% 0 0.0%

serve 4378 89 2.0% 815 18.6%

interest 2476 74 3.0% 0 0.0%

TOTAL 50,007 1487 3.0% 4223 8.4%

we developed a patch BrillPatch [41] to the Brill Tagger which guarantees that the pre-tag be respected all

through the tagging process and contribute to the selection of appropriate tags of the surrounding words. On

using guaranteed pre-tagging, as expected, we found no mistags in all the data. Also, we expect the quality

of parsing and word sense disambiguation to improve.

3.5 Collins Parser

The part of speech tagged data is fed to the Collins parser [16] [37] to obtain parsed sentences. The Collins

parser places its own requirements on the data to be parsed which are as follows:

Parser Req-I: Number of tokens per sentence must not be more than 120.

Parser Req-II: There must be one sentence per line.

Parser Req-III: All tokens must be followed by white space and corresponding part of speech.

Parser Req-IV: Total number of tokens in the sentence must be placed at start of sentence.

Parser Req-V: The data file should not have more than 2500 sentences.
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Requirement I, as described earlier, is taken care byrefine [49]. We developed theparseSense-

val [47] package to pre-process the data so that it to parse the data. It accepts part of speech tagged

sentences in a format as output by the Brill Tagger. It has the following functions:

I Pre-process the data to make it acceptable by the Collins parser.

II Use the Collins parser to parse the data.

III XML’ize the parsed output.

IV Given the source file in Senseval-2 data format, put back the XML and SGML tags.

3.5.1 Preprocessing for the Collins Parser

Some of the sentences in Senseval-1, Senseval-2,line, hard, serve and interest data have very long sen-

tences (more than 120 tokens) as detailed in Table 35. The Collins parser which is used to parse the data

does not accept sentences which have more than 120 tokens. Hence another option was incorporated into

refine [49] to allow replacements of contexts of user specified instances with modified/new contexts.

The long sentences were split into two (possibly more) sentences by manual inspection. Contexts having

these long sentences were replaced by contexts having manually split sentences. Manual splits were made

at colons, semicolons, quotation marks, hyphens or conjunctions.

The instances whose contexts are to be replaced and the modified/new contexts are specified via a CON-

TEXT file. The CONTEXT file must have the instance ID of the instance whose context is to be replaced

followed by the modified/new context. The context must be demarcated by�context� and�/context� tags.

The instance ID,�context� and�context� tags must be on new lines. Blank lines are allowed, however,

everything between the context tags is considered part of context. The token(s) between the�head� and

�/head� tags of the context in the CONTEXT file are replaced by corresponding tokens in the SOURCE

file. If the original context has its head word pre-tagged with a part of speech, the updated context will thus

have the pre-tag. CONTEXT files corresponding to the Senseval-1, Senseval-2 test and training data,line,

hard, serve andinterest data were created.

81



Table 35: Instances with long sentences (more than 120 tokens).

Total number Instances with Head word part

Sense-Tagged Data of Instances Long Sentences Percentage of Long Sentence Percentage

Senseval-2 Training 8611 27 0.31% 16 0.18%

Senseval-2 Test 4328 18 0.42% 9 0.21%

Senseval-1 Training 13276 54 0.41% 43 0.32%

Senseval-1 Test 8452 43 0.51% 36 0.43%

line 4149 1 0.02% 1 0.02%

hard 4337 2 0.05% 2 0.05%

serve 4378 3 0.07% 1 0.02%

interest 2476 1 0.04% 1 0.04%

TOTAL 50,007 149 0.30% 109 0.22%
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Preprocessing of the part of speech tagged data as given out by the Brill Tagger is done to bring it in a format

acceptable by the Collins parser. The number of tokens in each sentence is counted and placed at the start

of the sentence. The forward slash separating the token and the corresponding part of speech tag is replaced

by a space. Additionally, certain part of speech tags as given out by the Brill Tagger are not known to the

Collins parser, hence, these tags are replaced by their closest related part of speech tag. Details of these

replacements are listed in Table 36.

Table 36: Brill Part of Speech Tags unknown to the Collins Parser and their replacements.

Brill Tagger POS Tag Replacement for Collins Parser

( SYM

) SYM

/ CC

” ”

The two consecutive forward slashes indicating pre-tagging are replaced by a single forward slash. If the

file is has more than 2400 lines it is broken into multiple files, each with 2400 lines, except the last. This

is because the Collins Parser does not accept files with more than 2500 lines. each of the files is parsed

independently. The instance from Figure 37 after pre-processing and ready to parse is shown in Figure 39.

3.5.2 Parsing with the Collins Parser

The pre-processed data is parsed using the Collins parser with its default option. INPUT signifies the input

to the parser while OUTPUT is the parsed data file. PARSERHOME is where the parser is downloaded.

	����� � � ������ �!��"�#����"�#�����$����	� � ������ �!����#��������

��%
�&' ������ �!��"�#����"�#����	��""�� ����� � � � � � ���&'�&'

The last sentence (has the head word) from the instance shown in Figure 39 is shown in Figure 40 after

parsing.
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38 Their PRP$ multiscreen JJ projections NNS of IN slides NNS and CC film NN loops NNS

have VBP featured VBN in IN orbital JJ parties NNS , , at IN the DTAstoria NNP and CC

Heaven NNP , , in IN Rifat NNPOzbek NNP ’s POS 1988 CD / NN 89 CD fashion NN shows VBZ

, , and CC at IN Energy NNP ’s POS recent JJ Docklands NNS all-dayer JJR . .

45 From IN their PRP$ residency NN at IN the DT Fridge NNP during IN the DT first JJ

summer NN of IN love NN , , Halo NNP used VBD slide NN and CC film NN projectors NNS to

TO throw VB up IN a DT collage NN of IN op-art JJ patterns NNS , , film NN loops NNS of

IN dancers NNS like IN E-Boy NNP and CC Wumni NNP , , and CC unique JJ fractals NNS

derived VBN from IN video NN feedback NN . .

22 “ “ We PRP ’re VBP not RB aware JJ of IN creating VBG a DT visual JJ identify VB

for IN the DT house NN scene NN , , because IN we PRP ’re VBP right NN in IN there RB . .

23 We PRP see VBP a DT dancer NN at IN a DT rave VBP , , film NN him PRP later RB that DT

week NN , , and CC project NN him PRP at IN the DT next JJ rave VBP . . “ “

11 Ben NNP Lewis NNP Halo NNP can MD be VB contacted VBN on IN 071 CD 738 CD 3248 CD . .

11 Art NNP you PRP can MD dance VB to TO from IN the DT creative JJ group NN called VBN

Halo NNP

Figure 39: Instance from Figure 37 after pre-processing and ready to parse
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) ) ) ) ) )) (VP~called~2~1 called/VBD (S−A~Halo~1~1 (NPB~Halo~1~1 Halo/NNP ) ) ) ) )

(PP−g~to~2~1 to/TO T/TRACE ) (PP~from~2~1 from/IN (NPB~group~3~3 the/DT creative/JJ group/NN

(Ss−A−g~can~2~2 (NPB~you~1~1 you/PRP ) (VP−g~can~2~1 can/MD (VP−A−g~dance~3~1 dance/VB

(TOP~called~1~1 (S~called~2~2 (NP−A~Art~2~1 (NPB~Art~1~1 Art/NN ) (SBAR−g~can~1~1

S−A −1.79597 NP−A −1.16349 NPB −0.869919 NNP 0 Halo

VP −6.1979 VBD 0 called

NP−A −11.7417 NPB −11.2813 DT 0 the

PP −17.7415 IN 0 from

NN 0 group

JJ 0 creative

VP−g −38.0742 MD 0 can

PP−g −0.686837 TO 0 to

VP−A−g −27.9592 VB 0 dance

SBAR−g −41.3336 Ss−A−g −41.2892 NP−A −0.0053634 NPB −0.00170351 PRP 0 you

TOP −76.5798 S −70.1835 NP−A −51.1724 NPB −0.873273 NN 0 Art

PROB 3371 −76.5798 0

Figure 40: Sentence from Figure 39 after parsing by the Collins Parser
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3.5.3 Post Processing - Beyond the Collins Parser

Similar to the post processing done byposSenseval [48], the post-processing inparseSenseval in-

volves XML’izing the parse information. Only the parenthesized version of the parse is retained. All tokens

which have the parse information have either the left or right bracket. All these tokens are placed in angular

braces. The forward slash separating a word and its part of speech is replaced by a space and the part of

speech tag is placed in angular braces as well. The word is converted to lower case. The sample sentence

from Figure 40 after XML’izing is shown in Figure 41.

�P=”TOP˜called˜1˜1”��P=”S˜called˜2˜2”��P=”NP-A˜Art˜2˜1”��P=”NPB˜Art˜1˜1”� Art

�p=”NN”/� �/P� �P=”SBAR-g˜can˜1˜1”��P= ”Ss-A-g˜can˜2˜2”��P=”NPB˜you˜1˜1”� you

�p=”PRP”/� �/P� �P=”VP-g˜can˜2˜1”� can�p=”MD”/� �P=”VP-A-g˜dance˜3˜1”� dance

�p=”VB”/� �P=”PP-g˜to˜2˜1”� to�p=”TO”/� �/P� �P=”PP˜from˜2˜1”� from�p=”IN”/�

�P=”NPB˜group˜3˜3”� the�p=”DT”/� creative�p=”JJ”/� group�p=”NN”/� �/P� �/P�

�/P� �/P� �/P� �/P� �/P� �P=”VP˜called˜2˜1”� called�p=”VBD”/�

�P=”S-A˜Halo˜1˜1”��P=”NPB˜Halo˜1˜1”� Halo�p=”NNP”/� �/P� �/P� �/P� �/P�

Figure 41: Sentence from Figure 40 after XML’izing.

If the original Senseval-2 format data file is provided, all the XML and SGML tags are put back at their orig-

inal positions in the parsed file. The SGML tags, as inposSenseval [48] are placed in angular braces. If

the original data file was split into multiple files, each with 2400 lines, the files are concatenated, back into

one large file. The sample instance from Figure 40 after post-processing is shown in Figure 42. Only the

sentence housing the head word is shown due to space constraints.
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�lexelt item=”art.n”�

�instance id=”art.40001” docsrc=”bncACN 245”�

�answer instance=”art.40001” senseid=”art�context�

. . .

. . .

�P=”TOP˜called˜1˜1”��P=”S˜called˜2˜2”��P=”NP-A˜Art˜2˜1”��P=”NPB˜Art˜1˜1”�

�head� art�/head� �p=”NN”/� �/P� �P=”SBAR-g˜can˜1˜1”��P=”Ss-A-g˜can˜2˜2”�

�P=”NPB˜you˜1˜1”� you�p=”PRP”/� �/P� �P=”VP-g˜can˜2˜1”� can�p=”MD”/�

�P=”VP-A-g˜dance˜3˜1”� dance�p=”VB”/� �P=”PP-g˜to˜2˜1”� to�p=”TO”/� �/P�

�P=”PP˜from˜2˜1”� from�p=”IN”/� �P=”NPB˜group˜3˜3”� the�p=”DT”/� creative

�p=”JJ”/� group�p=”NN”/� �/P� �/P� �/P� �/P� �/P� �/P� �/P�

�P=”VP˜called˜2˜1”� called�p=”VBD”/� �P=”S-A˜Halo˜1˜1”��P=”NPB˜Halo˜1˜1”�

halo�[/caption]��[/div2]��[div2]� �[head]� �p=”NNP”/� �/P� �/P� �/P�

�/context�

�/instance�

�/lexelt�

Figure 42: Sentence from Figure 40 after Post-Processing.
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4 EXPERIMENTS

This section describes the Word Sense Disambiguation experiments based on lexical and syntactic features.

The syntactic features may be categorized into part of speech features and parse features. The experiments

have been carried out on part of speech tagged and parsed Senseval-2, Senseval-1,line, hard, serve and

interest data. The part of speech tagging is done usingposSenseval [48] with the Brill Tagger and

Guaranteed Pre-Tagging [42] while the parsing is done usingparseSenseval [47] with the Collins

Parser. Senseval-1 and Senseval-2 have pre-determined test and training data sets which have been utilized

in these experiments. Theline, hard, serve and interest data do not have a pre-determined division into

test and training data and are hence split up randomly into test and training sets usingsetup.pl, a part

of theSenseClusters [60] package. The training set has 80% of the instances while the test set has

the remaining 20%. The C4.5 algorithm as implemented by Waikato Environment for Knowledge Analysis

Weka[23][72], is used in the thesis to learn a decision tree for each word to be disambiguated. The Weka

implementation is in Java and is referred to as J48. Programs from SenseTools [5] are utilized to do the

word sense disambiguation and evaluation using Weka.

4.1 Individual Features

4.1.1 Lexical Features

The lexical features we have studied are surface form of the target word, unigrams and bigrams. Peder-

sen [55] has shown that lexical features can attain very good accuracies and these experiments are a repro-

duction of those experiments on Senseval-1 and Senseval-2 data. Similar experiments online, hard, serve

and interest data have been conducted for the first time. Tables 37, 38 and 39 display the accuracies for

Senseval-2, Senseval-1 andline, hard, serve andinterest data, respectively. It may be noted that the system

attempts at identifying the intended sense of all instances and hence the recall is 100%. The accuracy of the

majority classifier, which always guesses the intended sense to be the majority sense in the training data,

is also specified as a point of comparison. In case of Senseval-2 and Senseval-2 data, a break down of the

accuracies for each part of speech is depicted as well.

As may be observed, the bigrams and unigrams perform well for all the data. The results for Senseval-1 and

88



Table 37: Accuracy using Lexical Features on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

Surface Form 49.3% 54.6% 40.1% 59.0%

Unigrams 55.3% 61.6% 46.8% 60.9%

Bigrams 55.1% 60.9% 48.6% 61.8%

Table 38: Accuracy using Lexical Features on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

Surface Form 62.9% 67.1% 59.8% 68.5% 57.2%

Unigrams 66.9% 72.3% 62.7% 70.2% 63.2%

Bigrams 66.9% 71.7% 65.6% 69.9% 59.4%

Table 39: Accuracy using Lexical Features online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

Surface Form 54.3% 81.5% 44.2% 64.0%

Unigrams 74.5% 83.4% 73.3% 75.7%

Bigrams 72.9% 89.5% 72.1% 79.9%
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Senseval-2 are comparable those obtained by Pedersen [55]. Surface form which is a very simplistic feature

does not do significantly better than the majority classifier, except in case of Senseval-1 data. The part of

speech split up of results for Senseval-1 and Senseval-2 data demonstrates that the unigrams and bigrams

perform far better for nouns and verbs as compared to adjectives. Figures 43, 44 and fig:bi-tree depict some

of the decision trees learnt for surface form, unigrams and bigrams.

Surface form = floated ?

Surface form = float ?

No

Yes

Yes

No

523221

523235523224

Figure 43: Sample Decision Tree learnt using Surface Form as features

Yes No

Yes No

NoYes

Unigram = advertising ? Unigram = crossed ?

Unigram = fine ?

Unigram = draw ?

Unigram = telephone ?

division

telephone

product

Figure 44: Sample Decision Tree learnt using Unigrams as features
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Yes No

Yes No

NoYes

....

Bigram = customers in ?

Bigram = have served ?

Bigram = governing body ?

function as something

provide a service

hold office

Figure 45: Sample Decision Tree learnt using Bigrams as features

4.1.2 Part of Speech Features

Individual part of speech incorporates the part of speech of one word at a particular position relative to the

target word. Tables 40, 41, 42 show disambiguating accuracies using individual word parts of speech on

Senseval-2, Senseval-1 andline, hard, serve andinterest data, respectively. The system will always produce

a sense for a test instance and hence the recall is 100%, making precision and accuracy equivalent. The

accuracy of the majority classifier, which always guesses the intended sense to be the majority sense in the

training data, is provided as a point of comparison. In the case of Senseval-1 and Senseval-2 data, a break

down of the accuracies for each part of speech is depicted as well. It may be noted that we performed

experiments with parts of speech of words in close vicinity (at most 2 words away from the target word) to

the target word as part of speech features have a highly localized effect.

We observe that that except forline andhard data, the individual word part of speech have performed better

than the majority sense classifier. In the case ofserve and interest data their performance is significantly

better than the majority sense baseline for almost all the part of speech features considered. A striking

pattern that emerges from these results is the high accuracies achieved using the part of speech of the word

immediately following the target word (P�). Except forline andhard data it is found to give the best results.

The break down of accuracies for individual parts of speech helps explain this phenomenon. In the case of

91



Table 40: Accuracy using Individual Part of Speech Features on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

P
�� 47.1% 51.9% 38.0% 57.9%

P
�� 49.6% 55.2% 40.2% 59.0%

P� 49.9% 55.7% 40.6% 58.2%

P� 53.1% 53.8% 49.1% 61.0%

P� 48.9% 50.2% 43.2% 59.4%

Table 41: Accuracy using Individual Part of Speech Features on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

P
�� 57.5% 58.2% 58.6% 64.0% 48.9%

P
�� 59.2% 62.2% 58.2% 64.3% 51.8%

P� 60.3% 62.5% 58.2% 64.3% 57.1%

P� 63.9% 58.2% 58.6% 64.0% 48.9%

P� 59.9% 60.0% 60.8% 65.2% 53.4%

Table 42: Accuracy using Individual Part of Speech Features online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

P
�� 54.9% 81.6% 52.1% 56.0%

P
�� 56.2% 82.1% 54.8% 62.7%

P� 54.3% 81.6% 47.4% 64.0%

P� 54.2% 81.6% 55.6% 65.3%

P� 54.3% 81.7% 48.9% 62.3%
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verbs and adjectives, the disambiguation accuracy using part of speech tags of words at one or two positions

to the right of the target word is the highest. We believe that this occurs as words in these positions may act

as objects to target words which are verbs (For example,drink water). Similarly, when the target word is

an adjective, the words immediately to its right are possibly nouns which are qualified by the adjective (For

example,short discussion. As words immediately to the right of the target word may have strong syntactic

relations with the target word, their parts of speech are strongly suggestive of the intended sense. By the

same reasoning, nouns will be expected to be disambiguated best by part of speech of words on its imme-

diate left. However, we find that nouns are helped by the target word part of speech (P�) and the parts of

speech of words adjacent to it on either side (P
��, P�). This is justified as nouns act as subjects in a sentence

and a subject is followed by a syntactically related verb. Thus words on either side of nouns bear important

syntactic relations and are hence equivalently suggestive at its intended sense. A sample decision tree learnt

is shown in figure 46

VBG
VB
VBD

Po = VBG ?

Po = VB ?

Po = VBD ?

Yes No

Yes

NoYes

No

523224

523221 523225

523224

Verb Past

Verb Base Form

Verb Gerund

Figure 46: Sample Decision Tree learnt using Individual Word POS as features

4.1.3 Parse Features

Experiments were performed to evaluate the accuracy achieved with various parse features. Tables 43, 44,

and 45 show the results using individual parse features on Senseval-2, Senseval-1 andline, hard, serve and
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interest data, respectively. The recall is 100% throughout. The accuracy of the majority classifier is specified

as a point of comparison. In case of Senseval-1 and Senseval-2 data, a break down of the accuracies for each

part of speech is shown as well.

Table 43: Accuracy using Parse Features on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

Head Word 51.7% 58.5% 39.8% 64.0

Head of Parent Phrase50.0% 56.1% 40.1% 59.3

Phrase (POS) 48.3% 51.7% 40.3% 59.5

Parent Phrase (POS) 48.5% 53.0% 39.1% 60.3

Table 44: Accuracy using Parse Features on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

Head Word 64.3% 70.9% 59.8% 66.9% 59.7%

Head of Parent Phrase60.6% 62.6% 60.3% 65.8% 53.4%

Phrase (POS) 58.5% 57.5% 57.2% 66.2% 55.2%

Parent Phrase (POS) 57.9% 58.1% 58.3% 66.2% 50.0%

The head word of the phrase housing the target word, or head word for short, has produced the most accurate

results in almost all the data. The results for nouns and adjectives are most improved by this features. We

believe this is linguistically justified as the head word of a phrase is a content word and nouns in a sentence

are generally associated with other content words in the context. In case of adjectives the relation is likely

to be even stronger as the head word is likely to be the noun being qualified by the adjective. The head of

parent phrase is found to be very useful in theline data. Content words likedraw, cross andwrite which

were strongly associated with the sense of the target wordline were picked up as the head of parent phrase.

The phrase of the target word and its parent phrase are not found to be useful when used as the lone features.

We believe this is due to the fact that a target word occurs in a handful of phrases and thus the tree learnt
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Table 45: Accuracy using Parse Features online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

Head Word 54.7% 87.8% 47.4% 69.1%

Head of Parent Phrase59.8% 84.5% 57.2% 67.8%

Phrase (POS) 54.3% 81.5% 41.4% 54.9%

Parent Phrase (POS) 54.3% 81.7% 41.6% 54.9%

is very close to a majority classifier. Figures 47 and 48 depict sample decision trees learnt using head word

and phrase of the target word as features.

....

Yes

Head = look ?

Head = work ?

Yes No

No

NoYes

Decision Tree for hard (Head Word)

Head = surface ?

HARD2

HARD2

HARD3

Figure 47: Sample Decision Tree learnt using Head Word as features
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Phrase = Noun Phrase ?

Phrase = Verb Phrase ?

Yes

Yes No

No

NoYes

Decision Tree for authority (Phrase)

authority~1:18:01::

authority~1:07:00::authority~1:14:00

authority~1:14:00::

Phrase = Pronoun Phrase ?

Figure 48: Sample Decision Tree learnt using Phrase as features

4.2 Complementarity and Redundancy

We have seen a rich set of features which may be utilized for word sense disambiguation. It is expected that

a certain number of instances which are correctly tagged by one feature X, are correctly disambiguated by

another feature Y, as well. That is to say, there is a certain amount of redundancy amongst X and Y. On

the other hand, it is expected that some number of instances are correctly disambiguated by X and not Y,

and vice versa. That is, the features X and Y are complementary to a certain extent. In order to gain an

insight into the amount of complementarity and redundancy amongst two features or two sets of features,

we introduce a few measures to compare the sense disambiguations done by two different features. The

Dice Agreement is used to quantify the similarity in tagging as done by the two features. For each instance,

the similarity in tagging by the two features is calculated by using the Dice Coefficient. Let A be the set

containing the senses assigned to the instance by feature X. Similarly, let B be the set containing the senses

assigned to the instance by feature Y. Then the Dice Coefficient may be calculated as follows:

(��� �
	 � �� � ��

��� 
 ���
(22)

If feature set 1 tags it with senses l and m while feature 2 tags it l, n and p, the Dice Coefficient is 2 x 1

/ (2 + 3) = .4. This similarity is calculated for each instance and the average value will be referred to as
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Dice Agreement. Given two features, we calculate theOptimal Ensemble andBaseline Ensemble, of the two

features. ByOptimal Ensemble, we mean the accuracy attained by a hypothetical ensemble which predicts

the intended sense correctly if either of the two individual features suggests the correct sense. If neither of

the feature sets suggests the desired sense, then the ensemble fails to get the intended sense. Such an ensem-

ble, albeit hypothetical, provides an upper bound of the accuracy achievable by combining the individual

features.Baseline Ensemble is again a hypothetical ensemble useful in quantifying the redundancy in the

two features or feature sets. By redundancy we mean the amount by which the discrimination knowledge

provided by feature set 1 is provided by feature set 2 as well. The ensemble correctly predicts the intended

sense only when both individual features suggest the correct sense. In case any of the feature sets suggests

multiple senses, the ensemble identifies the senses in common as the intended sense. Two additional mea-

sures are provided which shed light into the redundant instances (instances correctly tagged by both feature

sets). Absolute Agreement, or Agreement for short, is the ratio of the redundant instances to the total in-

stances. Let N be the number of instances being disambiguated. Let M be the instances which are assigned

at least one sense in common by both feature X and Y. Then theAbsolute Agreement between X and Y is

defined to be:

�)����� �	���"�� �
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(23)

Precision on Agreement is the ratio of the redundant instances which are correctly tagged to the redundant

instances. As defined earlier, let A be the set of senses assigned to an instance by feature X. Similarly, let B

be the set of senses assigned to the instance by feature Y. Let C be the number of senses from the intersection

of A and B, which are correct. Then the precision on agreement for the instance is calculated as follows:

��������� �� �	���"�� ��� %������ �
��� � ���

*
(24)

The over allPrecision on Agreement is calculated by averaging the Precision on Agreement for each of the

M instances which are assigned at least one sense in common by both X and Y. It may be noted thatBaseline

Ensemble is equal to the product ofAbsolute Agreement andPrecision on Agreement.

�������� ����")�� � �)����� �	���"�� � ��������� �� �	���"�� (25)

We also note that the difference of accuracies attained by individual features (Accuracy X, Accuracy Y, say)

with theBaseline Ensemble added to theBaseline Ensemble equals theOptimal Ensemble.

���"�� ����")�� � �������� ����")�� 
 ��������� + � �������� ����")���
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The higher the difference between theOptimal Ensemble and the accuracy achieved by the better of the two

features, the more there is reason to combine the two features. Also, higher the Baseline Ensemble more is

the redundancy amongst the features.

4.2.1 Complementarity and Redundancy amongst Lexical Features

Tables 46 and 47 show the complementarity and redundancy in discriminating information provided by the

various lexical features. The accuracies attained by individual features are given next to them to serve as

a point of comparison. We observe that Unigrams and Bigrams, albeit similar in nature, are significantly

complementary and the overall accuracy may be improved by their combination.

Table 46: Redundancy and Complementarity amongst Lexical Features in Senseval-2 Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Surface Form 49.3% Unigrams 55.3% 73.0% 61.1% 45.6% (77.0 * 59.2)

Unigrams 55.3% Bigrams 55.1% 73.8% 63.9% 48.2% (76.9 * 62.7)

Bigrams 55.1% Surface Form 49.3% 74.6% 60.0% 45.7% (77.6 * 58.9)

Table 47: Redundancy and Complementarity amongst Lexical Features in Senseval-1 Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Surface Form 62.9% Unigrams 66.9% 81.5% 71.8% 59.9% (84.9 * 70.6)

Unigrams 66.9% Bigrams 66.9% 76.7% 74.9% 59.6% (78.3 * 76.1)

Bigrams 66.9% Surface Form 62.9% 76.1% 73.0% 58.3% (78.4 * 74.3)
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4.2.2 Complementarity and Redundancy amongst Syntactic Features

In order to gain an insight into the complementarity and redundancy of the individual part of speech features

we compared the tagging as done by different feature sets. Table 48 and 49 depict our findings for Senseval-

2 and Senseval-1 data. The accuracies attained by individual features are given next to them to serve as a

point of comparison.

Table 48: Part of Speech Feature Redundancy and Complementarity in Senseval-2 Data

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

P
�� 49.6% P� 49.9% 72.9% 57.5% 44.4% (78.4 * 56.6)

P� 49.9% P� 53.1% 67.1% 61.1% 43.3% (71.1 * 60.9)

P� 53.1% P� 48.9% 69.5% 59.8% 44.2% (74.0 * 59.7)

P�, P� 54.3% P
�� 49.6% 62.1% 62.9% 43.5% (67.2 * 64.8)

P
��, P�, P� 54.6% P

�� 47.1% 58.1% 63.0% 40.3% (61.9 * 65.0)

P
��, P�, P� 54.6% P� 48.9% 60.4% 63.3% 41.7% (64.0 * 65.1)

Table 49: Part of Speech Feature Redundancy and Complementarity in Senseval-1 Data

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

P
�� 59.2% P� 60.3% 77.6% 66.9% 54.4% (81.5 * 66.7)

P� 60.3% P� 63.9% 74.9% 69.8% 56.3% (78.2 * 71.9)

P� 63.9% P� 59.9% 78.2% 68.8% 56.5% (81.2 * 69.5)

P�, P� 66.7% P
�� 59.2% 70.6% 72.4% 54.8% (73.4 * 74.7)

P
��, P�, P� 68.0% P

�� 57.5% 67.6% 73.6% 53.7% (71.1 * 75.5)

P
��, P�, P� 68.0% P� 59.9% 71.8% 73.2% 56.3% (74.9 * 74.2)

The parts of speech of individual words show a certain amount of complementarity amongst each other. The

large differences between optimal accuracies of such combinations compared to the individual accuracies
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suggests that there will be better disambiguation using such pairs of features for disambiguation rather than

just one. The part of speech combination of the target word and the word to its right (P�, P�) in general has

highOptimal Ensemble and so is most suitable for combination. The similarity in the assignments based on

P�-P� pair is significantly different from that of P
�� as is seen by their relatively lower similarity values and

once again there seems to be benefit in combining the three features based on the higher optimal accuracy

values for the (P�, P�)-(P��) pair. We also observe that the feature set pairs (P
��, P�, P�) - (P

��) and (P
��,

P�, P�) - (P�) do not have much higher optimal accuracies than that of (P
��, P�, P�) itself. This suggests that

using the part of speech tags of words at two positions to the left and right of the target word, in addition to

(P
��, P�, P�) is not likely to gain much.

Based on observed results for part of speech features and the complementary redundancy values two sets of

part of speech features stand out as good candidates to be used for word sense disambiguation - (P�, P�) and

(P
��, P�, P�)

4.2.3 Complementarity and Redundancy across Lexical and Syntactic Features

Tables 50 through tab:Redundancy Across interest depict the redundancy and complementarity across the

best of the lexical and syntactic features identified in the previous sections. Note, we compare additional

pairs for Senseval-2 data.

The additional comparisons in the Senseval-2 data (table 50 are meant to study some of the part of speech

features in combination with lexical features. We observe that the various individual part of speech fea-

tures show varying similarities with lexical features (Unigrams and Bigrams). The P� feature stands out

as being least similar (low Dice Agreement) with the lexical features and hence having greater potential of

being complementary to them. The high values ofOptimal Ensemble with P� identifies it as being more

complementary with the lexical features than other individual parts of speech.

In general we observe a good deal of complementarity across lexical and syntactic features in all the data.

This may be deduced from the high values ofOptimal Ensemble as compared to individual accuracies. The

complementarity is markedly less inhard data for which the individual features itself attain a very high

accuracy. We also note that theOptimal Ensemble in general is lower across part of speech features parse

features than in case of part of speech features and lexical features. this suggests that the latter pair is more
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Table 50: Redundancy and Complementarity Across Knowledge Sources in Senseval-2 Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 55.3% P� 49.9% 69.9% 61.9% 45.1% (73.7 * 61.2)

Unigrams 55.3% P
�� 49.6% 64.7% 63.6% 43.9% (69.5 * 63.1)

Unigrams 55.3% P� 53.1% 63.2% 66.2% 44.2% (67.1 * 65.8)

Unigrams 55.3% P� 48.9% 64.0% 63.3% 42.8% (67.9 * 63.1)

Unigrams 55.3% P�, P� 54.3% 62.0% 67.1% 44.4% (65.9 * 67.3)

Unigrams 55.3% P
��, P�, P� 54.6% 59.4% 67.9% 43.6% (62.7 * 69.4)

Bigrams 55.1% P� 49.9% 71.9% 61.0% 45.2% (75.1 * 60.2)

Bigrams 55.1% P
�� 49.6% 70.1% 61.4% 45.5% (74.6 * 61.0)

Bigrams 55.1% P� 53.1% 69.4% 63.4% 46.3% (72.8 * 63.6)

Bigrams 55.1% P� 48.9% 72.3% 61.2% 44.5% (72.3 * 61.5)

Bigrams 55.1% P
��, P�, P� 54.6% 62.4% 66.0% 44.7% (65.3 * 68.5)

Unigrams 55.3% Head 51.7% 70.8% 62.9% 46.4% (75.2 * 61.7)

Unigrams 55.3% Parent 50.0% 66.3% 63.1% 43.4% (69.4 * 62.5)

Unigrams 55.3% Head, Parent 52.6% 67.4% 64.3% 45.4% (71.1 * 63.8)

Bigrams 55.1% Head 51.7% 73.5% 61.5% 46.9% (76.9 * 61.0)

Bigrams 55.1% Parent 50.0% 72.8% 60.3% 45.5% (75.4 * 60.4)

Bigrams 55.1% Head, Parent 52.6% 71.8% 62.2% 46.8% (74.8 * 62.5)

P�, P� 54.3% Head 51.7% 69.3% 62.0% 45.9% (74.4 * 61.7)

P�, P� 54.3% Parent 50.0% 64.7% 62.4% 43.1% (68.2 * 63.2)

P�, P� 54.3% Head, Parent 52.6% 67.8% 62.8% 45.6% (72.0 * 63.4)

P
��, P�, P� 54.6% Head, Parent 54.6% 64.6% 63.9% 44.7% (68.4 * 65.4)
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Table 51: Redundancy and Complementarity Across Knowledge Sources in Senseval-1 Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 66.9% P�, P� 66.7% 71.8% 76.6% 58.1% (74.2 * 78.3)

Unigrams 66.9% P
��, P�, P� 68.0% 69.4% 78.0% 57.6% (71.7 * 80.4)

Bigrams 66.9% P�, P� 66.7% 75.1% 74.9% 59.2% (77.0 * 76.9)

Bigrams 66.9% P
��, P�, P� 68.0% 75.2% 75.9% 59.5% (75.2 * 79.1)

Unigrams 66.9% Head, Parent 65.1% 75.6% 74.8% 58.2% (77.9 * 74.6)

Bigrams 66.9% Head, Parent 65.1% 76.1% 74.6% 58.3% (78.0 * 74.8)

P�, P� 66.7% Head, Parent 65.1% 76.3% 73.7% 59.0% (78.9 * 74.9)

P
��, P�, P� 68.0% Head, Parent 65.1% 73.0% 75.4% 58.8% (75.5 * 77.9)

Table 52: Redundancy and Complementarity Across Knowledge Sources inline Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 74.5% P�, P� 54.1% 69.4 77.2% 53.1% (71.9 * 73.9)

Unigrams 74.5% P
��, P�, P� 60.4% 65.2% 82.0% 55.1% (68.3 * 80.7)

Bigrams 72.9% P�, P� 54.1% 75.6% 74.4% 53.9% (77.4 *60.7)

Bigrams 72.9% P
��, P�, P� 60.4% 68.5% 79.2% 55.9% (70.7 * 79.1)

Unigrams 74.5% Head, Parent 60.4% 69.5% 80.1% 55.6% (70.8 * 78.5)

Bigrams 72.9% Head, Parent 60.4% 73.2% 78.0% 55.5% (73.7 * 75.3)

P�, P� 54.1% Head, Parent 60.4% 86.2% 62.5% 52.6% (87.7 * 60.0)

P
��, P�, P� 60.4% Head, Parent 60.4% 74.2% 70.4% 51.6% (76.5 * 67.4)
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Table 53: Redundancy and Complementarity Across Knowledge Sources inhard Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 83.4% P�, P� 81.9% 92.7% 86.4% 79.6% (93.4 * 85.2)

Unigrams 83.4% P
��, P�, P� 84.8% 87.7% 89.7% 79.4% (88.6 * 89.6)

Bigrams 89.5% P�, P� 81.9% 90.2% 90.4% 81.1% (90.3 * 89.8)

Bigrams 89.5% P
��, P�, P� 84.8% 89.3% 91.8% 82.7% (89.5 * 92.4)

Unigrams 83.4% Head, Parent 87.7% 89.5% 90.7% 81.1% (90.3 * 89.9)

Bigrams 89.5% Head, Parent 87.7% 94.2% 91.3% 86.1% (94.5 * 91.1)

P�, P� 81.9% Head, Parent 87.7% 91.5% 88.8% 80.8% (91.6 * 88.2)

P
��, P�, P� 84.8% Head, Parent 87.7% 88.1% 91.4% 81.2% (88.4 * 91.9)

Table 54: Redundancy and Complementarity Across Knowledge Sources inserve Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 73.2% P�, P� 60.2% 60.1% 85.1% 58.4% (69.6 * 83.9)

Unigrams 73.2% P
��, P�, P� 73.0% 60.8% 89.9% 58.4% (62.5 * 93.5)

Bigrams 72.1% P�, P� 60.2% 69.1% 81.2% 61.7% (61.7 * 78.6)

Bigrams 72.1% P
��, P�, P� 73.0% 69.7% 85.6% 60.9% (71.4 * 85.3)

Unigrams 73.2% Head, Parent 58.1% 53.7% 84.4% 47.6% (54.5 * 87.2)

Bigrams 72.1% Head, Parent 58.1% 60.2% 80.2% 50.7% (61.1 * 83.0)

P�, P� 60.2% Head, Parent 58.1% 56.3% 77.8% 50.6% (65.2 * 77.5)

P
��, P�, P� 73.0% Head, Parent 58.1% 59.2% 81.8% 49.9% (59.9 * 83.4)
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Table 55: Redundancy and Complementarity Across Knowledge Sources ininterest Data.

Feature-Set Pair Dice Optimal Baseline Ensemble

Set 1 Accuracy Set2 Accuracy Agree. Ens. (Agree. * Prec. on Agree.)

Unigrams 75.7% P�, P� 70.5% 63.2% 88.5% 59.4% (64.6 * 91.9)

Unigrams 75.7% P
��, P�, P� 78.8% 66.0% 91.47% 65.3% (67.6 *96.6)

Bigrams 79.9% P�, P� 70.5% 68.0% 87.9% 63.2% (68.6 * 92.0)

Bigrams 79.9% P
��, P�, P� 78.8% 70.3% 90.1% 69.5% (71.4 * 97.4)

Unigrams 75.7% Head, Parent 61.8% 61.8% 90.5% 59.2% (62.3 * 94.9)

Bigrams 79.9% Head, Parent 61.8% 65.7% 90.4% 62.3% (65.9 * 95.5)

P�, P� 70.5% Head, Parent 61.8% 83.8% 77.7% 66.3% (84.6 * 78.4)

P
��, P�, P� 78.8% Head, Parent 61.8% 78.7% 85.6% 67.6% (79.8 * 84.7)

complementary than the former.

We note that theAgreement values amongst the feature sets lies between .55 and .75 except forhard data

for which we would expect much higher agreements due to the high accuracies. We would expect these

values to be above the accuracy of the least accurate feature set in the ensemble. This is because, if both

systems with accuracies greater than .5 suggest the same sense then it is more likely that the suggested sense

is correct than the accuracy of the worst system in the ensemble. Except for the bigram-POS(P�, P�) combi-

nation inline data, we observe this inequality to be true. We would always like the precision on agreement

values to be high, since both systems are suggesting the same sense in these instances. However, we would

like the feature sets being combined to have low similarity, this is so that they may be good at correctly

tagging different kinds of instances and hence a good ensembling technique may be useful in attaining high

accuracies. If the agreement is very high, even the best ensembling technique will not help much more than

the individual components. Thus, two summarize two individual feature sets are worth combining with an

ensemble technique if, their agreement is low while the precision on agreement andOptimal Ensemble are

high. In the comparisons done, we note that of all the individual part of speech features, P� is most suitable

for combining with lexical features. We observe that there is significant complementarity across lexical and

syntactic features. We also conclude that part of speech and lexical features are more complementary than
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part of speech and parse features.

4.3 Combining Features

4.3.1 Sequences of Parts of Speech

Experiments were conducted using part of speech sequences corresponding to a sequence of words, as

features. This gives additional importance to a sequence of part of speech tags. We believe that better results

may be obtained this way if part of speech sequences are suggestive of the intended sense. Results on using

sequences of parts of speech are shown in Tables 56, 57 and 58.

Table 56: Accuracy using Part of Speech Sequences on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

P
��P

�� 48.9% 53.8% 39.7% 59.0%

P
��P� 50.8% 57.8% 40.4% 59.1%

P�P� 53.8% 57.2% 47.7% 60.5%

P�P� 52.4% 53.6% 48.1% 59.5%

P
��P� 51.9% 55.3% 45.3% 59.5%

P�P�P� 51.4% 54.6% 44.9% 59.5%

P
��P�P� 52.0% 56.8% 44.1% 59.3%

Part of speech sequences have in general performed better than individual part of speech features, indicat-

ing an amount of complementarity in the discrimination information provided by the individual tags. The

sequences involving the word to the right of the target word (P�) show best results. The sequence P
��P�

is found to be almost as good as P
��P�P� in most data. It may be noted that all target words for a given

task belong to the same broad part of speech such as noun, verb and adjective. Thus, P� is useful only if the

subtle distinctions within nouns, verbs and adjectives are suggestive of the intended sense. Figure 49 depicts

a sample decision tree learnt using sequence of part of speech.
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Table 57: Accuracy using Part of Speech Sequences on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

P
��P

�� 58.9% 62.1% 58.3% 64.4% 50.5%

P
��P� 61.6% 65.8% 59.7% 64.4% 56.3%

P�P� 65.5% 66.5% 66.3% 66.2% 62.0%

P�P� 62.5% 63.7% 65.7% 57.3% 57.3%

P
��P� 62.2% 64.4% 63.4% 65.0% 54.7%

P�P�P� 62.8% 64.3% 63.0% 65.7% 57.7%

P
��P�P� 63.3% 66.8% 63.3% 65.0% 56.9%

Table 58: Accuracy using Part of Speech Sequences online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

P
��P

�� 57.3% 83.2% 59.4% 62.6%

P
��P� 56.5% 82.1% 59.9% 66.9%

P�P� 54.2% 81.8% 59.2% 69.5%

P�P� 56.1% 82.9% 58.1% 67.2%

P
��P� 58.6% 83.9% 67.2% 72.0%

P�P�P� 55.8% 82.8% 61.5% 68.5%

P
��P�P� 60.1% 83.9% 69.7% 73.8%
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Figure 49: Sample Decision Tree learnt using Sequence of POS as features

4.3.2 Combination of Part of Speech features

The context around the target word is captured to a greater extent by a combination of the many part of

speech features discussed so far. Tables 59, 60 and 61 depict the results attained using combinations of

individual word and sequences of part of speech tags. Note, here a single decision tree is created with

multiple part of speech features.

Combinations of part of speech features have outperformed both individual word part of speech features and

sequential part of speech features. This once again suggests a complementarity amongst individual word

part of speech features and also that combination of individual part of speech features better captures this

complementarity than sequences of tags. The combinations including P� tag continue to get best results.

In Senseval-1 and Senseval-2 data, we observe that verbs and adjectives give best results with the P�, P�

combination which as we pointed out earlier, is likely to capture the verb-object and adjective-noun relations.

We observe that nouns are disambiguated best using features from either side (P
��, P�, P�). line, hard, serve

and interest data deviate from the behavior of Senseval-1 and Senseval-2 data in that the two nouns, verb

and adjective are disambiguated best using a broad window of parts of speech of two words on either side

of the target word along with that of the target word itself (P
��, P

��, P�, P�, P�). We believe that this is

primarily due to the large amount of test and training data associated with these words. Words further away
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Table 59: Accuracy in Part of Speech Combinations on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

P
��, P� 50.8% 58.3% 40.1% 58.7%

P�, P� 54.3% 57.5% 48.3% 60.8%

P�, P� 53.2% 53.8% 49.7% 60.0%

P
��, P�, P� 54.6% 59.8% 47.4% 59.8%

P
��, P

��, P�, P�, P� 54.6% 60.3% 47.6% 58.3%

P
��P�, P�P� 54.0% 59.3% 46.2% 60.0%

P�, P
��P��, P�P� 53.7% 58.4% 46.7% 59.2%

Table 60: Accuracy using Part of Speech Combinations on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

P
��, P� 62.2% 67.0% 58.0% 64.5% 60.1%

P�, P� 66.7% 68.7% 66.5% 66.2% 64.7%

P�, P� 64.0% 65.6% 64.6% 65.8% 59.2%

P
��, P�, P� 68.0% 72.8% 66.1% 65.6% 66.5%

P
��, P

��, P�, P�, P� 67.8% 73.1% 66.0% 63.9% 66.1%

P
��P�, P�P� 66.7% 70.8% 65.6% 65.6% 63.6%

P�, P
��P��, P�P� 66.6% 68.3% 65.6% 66.7% 65.8%
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Table 61: Accuracy using Part of Speech Combinations online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

P
��, P� 56.5% 82.3% 60.3% 67.7%

P�, P� 54.1% 81.9% 60.2% 70.5%

P�, P� 55.9% 82.2% 58.0% 68.6%

P
��, P�, P� 60.4% 84.8% 73.0% 78.8%

P
��, P

��, P�, P�, P� 62.3% 86.2% 75.7% 80.6%

P
��P�, P�P� 60.2% 84.8% 70.7% 79.1%

P�, P
��P��, P�P� 63.1% 85.8% 73.0% 77.8%

from the target word tend to be weak indicators of the intended sense and may easily overcome by spurious

instances. In case of Senseval-1 and Senseval-2 data, the lack of sufficient data might have prevented such

features from being helpful.

4.3.3 Guaranteed Pre-Tagging

We use Guaranteed pre-Tagging [42] in the part of speech tagging of the text. Experiments were conducted

to compare the results of word sense disambiguation and see if guaranteed pre-tagging has helped better

disambiguation. Tables 62 and 63 show the results with and without guaranteed pre-tagging. It may be

noted that Mohammad and Pedersen [42] point out that the Brill Tagger derived its rules automatically from

the wall street journal corpus and so the number of contextual rules triggered by Senseval-2 data are very

low. Hence the effect of guaranteed pre-tagging to show up in the learned decision trees is expected to be

sparse.

We observe that for most of the features there is an improvement with guaranteed pre-tagging. The ones for

which there is a decline in accuracy are italicized. We believe that with a better rule set for the tagger when

the contextual tagger plays a more dominant role, the significance of pre-tagging will be even more.
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Table 62: Effect of Guaranteed Pre-Tagging on WSD as on Senseval-2 data

Guaranteed Pre-Tagging Regular Pre-Tagging

Majority Classifier 47.7% 47.7%

P
�� 49.6% 49.8%

P� 49.9% 49.5%

P� 53.1% 53.1%

P
��P�� 48.9% 48.4%

P
��P� 50.8% 51.2%

P�P� 53.8% 53.1%

P�P� 52.4% 51.1%

P
��P� 51.9% 51.1%

P�P�P� 51.4% 50.6%

P
��P�P� 52.0% 51.7%

P
��, P� 50.8% 50.9%

P�, P� 54.3% 53.8%

P
��, P�, P� 54.6% 54.7%

P
��, P

��, P�, P�, P� 54.6% 54.1%

P
��P�, P�P� 54.0% 53.7%

P�, P
��P��, P�P� 53.7% 52.4%
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Table 63: Effect of Guaranteed Pre-Tagging on WSD as on Senseval-1 data

Guaranteed Pre-tagging Regular Pre-tagging

Majority Classifier 56.3% 56.3%

P
�� 59.2% 59.5%

P� 60.3% 60.0%

P� 63.9% 63.6%

P
��P�� 58.9% 59.1%

P
��P� 61.6% 61.4%

P�P� 65.5% 65.0%

P�P� 62.5% 62.4%

P
��P� 62.2% 62.2%

P�P�P� 62.8% 62.7%

P
��P�P� 63.3% 63.2%

P
��, P� 62.2% 62.1%

P�, P� 66.7% 66.7%

P
��, P�, P� 68.0% 67.6%

P
��, P

��, P�, P�, P� 67.8% 66.1%

P
��P�, P�P� 66.7% 66.3%

P�, P
��P��, P�P� 66.6% 66.1%
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4.3.4 Combination of Parse Features

Certain parse features such as phrase in which the target word occurs and the parent phrase take on a very

small number of distinct values. For example a certain target word might just occur in a noun phrase or

a prepositional phrase. Thus decision trees created using just phrase of target word cannot be expected to

do much better than majority classifiers. However, such features might be useful in more complicated trees

involving other features. Tables 64, 65 and 66 present results obtained using decision trees which utilize

multiple parse features.

Table 64: Accuracy using a combination of parse features on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

Head, Parent 52.6% 60.3% 40.5% 63.3%

Head, Phrase 51.9% 58.5% 40.2% 64.0%

Head, Parent, Phrase52.9% 60.5% 40.9% 64.0%

Head, Parent, Phrase,52.7% 60.3% 40.6% 63.9%

Parent Phrase

Table 65: Accuracy using a combination of parse features on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

Head, Parent 65.1% 71.8% 61.1% 66.9% 60.2%

Head, Phrase 65.1% 71.5% 59.8% 68.7% 61.5%

Head, Parent, Phrase65.5% 71.9% 61.7% 66.9% 61.0%

Head, Parent, Phrase,65.6% 71.8% 61.5% 67.7% 61.6%

Parent Phrase

The head-parent combination is observed to be an improvement over the accuracies achieved simply with

the head word or the parent. In case of line and interest data, this improvement is significant. Amongst the
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Table 66: Accuracy using a combination of parse features online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% %

Head, Parent 60.4% 87.7% 58.1% 73.2%

Head, Phrase 54.7% 87.8% 45.9% 69.1%

Head, Parent, Phrase60.4% 87.7% 57.6% 73.2%

Head, Parent, Phrase,60.5% 87.7% 56.7% 73.5%

Parent Phrase

various combinations as well, the head-parent combination has always achieved high accuracies. We note

that the Head-Phrase combination has produced some of the best results for adjectives. This is significant as

using only the head word or the phrase as feature has produced noticeably lower accuracies for adjectives.

We also observe that the head - phrase - parent phrase combination has produced the best results for nouns.

Of all the parse feature combinations, the head-parent feature has always produced good results and thus

stands out as a potent feature combination. We shall study this feature combination with other lexical and

part of speech features chosen.

4.3.5 Combining Lexical and Syntactic Features

We used a simple ensemble technique to combine some of the best lexical and syntactic features identified

in the previous sections. Given an instances to be disambiguated, the probability for each sense as assigned

by the different decision trees is summed. The sense which gets the highest score is assigned to the instance.

Tables 67, 68 and 69 show the accuracies attained on Senseval-2, Senseval-1 andline, hard, serve and

interest data, respectively.

We observe a general increase in performance by combining the features. We expect better accuracies with

a more complex ensemble.
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Table 67: Accuracy using Combination of Features on Senseval-2 Data.

All Nouns Verbs Adjectives

Majority Classifier 47.7% 51.0% 39.7% 59.0%

Bigram, (P�P�) 56.0% 61.3% 48.1% 62.5%

Bigram, (P
��, P�, P�) 56.2% 61.7% 48.2% 62.2%

Unigram, (P�P�) 56.7% 62.1% 49.6% 61.3%

Unigram, (P
��, P�, P�) 57.0% 62.7% 49.8% 61.3%

Bigram, (Head, Parent) 55.9% 62.8% 45.9% 63.8%

Unigram, (Head, Parent) 56.5% 63.7% 46.9% 62.5%

(P�P�), (Head, Parent) 54.1% 60.7% 43.7% 63.2%

(P
��, P�, P�), (Head, Parent) 54.3% 61.0% 43.9% 63.0%

Table 68: Accuracy using Combination of Features on Senseval-1 Data.

All Nouns Verbs Adjectives Indeterminates

Majority Classifier 56.3% 57.2% 56.9% 64.3% 43.8%

Bigram, (P�P�) 69.3% 72.7% 66.9% 69.7% 68.0%

Bigram, (P
��, P�, P�) 69.9% 73.4% 66.8% 70.0% 70.0%

Unigram, (P�P�) 70.3% 75.3% 67.9% 71.3% 65.8%

Unigram, (P
��, P�, P�) 71.1% 76.4% 67.9% 71.4% 68.4%

Bigram, (Head, Parent) 69.3% 75.2% 65.7% 70.0% 65.8%

Unigram, (Head, Parent) 69.3% 75.0% 65.0% 71.0% 67.0%

(P�P�), (Head, Parent) 69.2% 73.6% 67.9% 66.6% 67.5%

(P
��, P�, P�), (Head, Parent) 70.4% 76.5% 67.2% 67.4% 69.1%
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Table 69: Accuracy using Combination of Features online, hard, serve andinterest Data.

line hard serve interest

Majority Classifier 54.3% 81.5% 42.2% 54.9%

Bigram, (P�P�) 71.3% 88.0% 74.6% 81.4%

Bigram, (P
��, P�, P�) 73.1% 88.8% 76.2% 83.2%

Unigram, (P�P�) 68.0% 82.2% 76.6% 78.9%

Unigram, (P
��, P�, P�) 74.2% 85.1% 81.6% 82.3%

Bigram, (Head, Parent) 72.6% 88.9% 73.3% 81.7%

Unigram, (Head, Parent) 69.3% 87.2% 75.8% 79.9%

(P�P�), (Head, Parent) 58.0% 86.6% 70.6% 73.7%

(P
��, P�, P�), (Head, Parent) 62.9% 87.4% 75.1% 79.9%

4.3.6 Best Ensembles

This section summarizes the best results we have achieved for each of the Senseval-2, Senseval-1,line,

hard, serve andinterest data and the combinations of lexical and syntactic features that have helped achieve

those results. We also indicate the combinations which we believe should yield the best results based on the

Optimal Ensemble amongst the lexical and syntactic features. Table 70 depicts these details.

We observe that except forline andhard data, the simple ensemble achieves results better than individual

classifiers. In case ofline data, a decision tree of unigrams gives the best results, while a decision tree of

bigrams performs best forhard data. A better ensemble technique is expected to do better than each of these

as is indicated by theOptimal Ensemble values. The increase in accuracy is most noticeable forserve data

which achieves 81.6% accuracy through the combination of Unigrams and part of speech features. We note

that the decision tree created by the combination of the target word part of speech, and the parts of speech

of its two adjacent words performs best in combination with the lexical features as opposed to the other

combinations of part of speech features. The part of speech of the word to the right of the target word has

been shown to be the most useful feature for sense disambiguation amongst all the individual word part of

speech features. Nouns have been shown to benefit from part of speech tags on its either side while verbs

and adjectives are disambiguated better using the part of speech tags of words to their immediate right. We
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Table 70: The best combinations of syntactic and lexical features

Feature-Set Pair Baseline Majority Simple Optimal

Data Set 1 Accuracy Set2 Accuracy Ens. Classifier Ens. Ens.

Senseval-2 Unigram 55.3% P
��, P�, P� 54.6% 43.6% 47.7% 57.0% 67.9%

Senseval-1 Unigram 66.9% P
��, P�, P� 68.0% 57.6% 56.3% 71.1% 78.0%

line Unigram 74.5% P
��, P�, P� 60.4% 55.1% 54.3% 74.2% 82.0%

hard Bigram 89.5% Head, Parent 87.7% 86.1% 81.5% 88.9% 91.3%

serve Unigram 73.3% P
��, P�, P� 73.0% 58.4% 42.2% 81.6% 89.9%

interest Bigram 79.9% P
��, P�, P� 78.8% 67.6% 54.9% 83.2% 90.1%

show that the head word of a phrase is particularly useful to disambiguate adjectives. The head of the phrase

and the head of the parent phrase have proved to be useful for nouns. We observe a significant amount

of complementarity across lexical and syntactic features which may be exploited by a suitable ensemble

technique. We have shown than guaranteed part of speech tagging, which was employed in the part of

speech tagging of all the data, has helped word sense disambiguation.
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5 Related Work

Extensive research has been done on word sense disambiguation during the last fifteen years. Numerous

sources of information have been used for the purpose. A desire to improve accuracies has propelled the use

of multiple features in combination. This gives rise to questions such as which sources of knowledge to use

and how to combine the various sources of knowledge in order to produce the best results. Many different

researchers have used varying techniques to combine different sets of features to achieve comparable results.

However, the relative utility of the sources of information with respect to each other has not been studied

in much detail. Certain lexical features such as bigrams, unigrams and surface form of the words are easy

to identify in the training data. Complex features such as syntactic relations are harder to isolate since,

sentences need to be parsed. It would be of interest to know if the cost of using a source of information is

justified by the increase in accuracy provided. This is dependent not just on the new source of information

but also on the set of features already being used.

Lexical features have been shown to attain high accuracies by Pedersen [55]. It is not clear as to how

much of the accurate disambiguation done by lexical features is also done by the syntactic features or at a

more finer level, how much of the disambiguation done by one feature is also done by another. This gives

an idea of the redundancy of using both features. Other questions include, how much of an improvement

in accuracy may one expect by using a source of information in addition to the ones already being used,

also arise. This brings us to the idea of complementarity of a feature or feature set with another. Such

questions have not been answered yet, however, useful insight into the issues involved and behavior of

these knowledge sources, when used in combination, may be found in some of the work within the last

fifteen years. Table 71 summarizes the sources of knowledge used by some of the more prominent work.

It shows us that, Pedersen [55] uses just bigrams while Lee and Ng [33] and Yarowsky and Florian [76]

study a comprehensive set. One of the earliest works on using multiple sources of information is that of

McRoy [38]. Also, the systems of McRoy [38], Lin [35] and Stevenson and Wilks [70] disambiguate all

words in the text while the rest disambiguate specific target words.
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Table 71: Recent work using multiple sources of knowledge.

Author(s) Bi Uni Col POS Sur Syn D Cor All

McRoy [1992] X X X X X

Yarowsky [1995] X X

Ng and Lee [1996] X X X X X

Lin [1997] X X X

Stevenson and Wilks [1998] X X X

Yarowsky [1999] X X X X

Pedersen [2001] X X

Lee and Ng [2002] X X X X X X

Yarowsky and Florian [2003] X X X X X X X

Table 72: Legend for Table71

Bi Bigrams

Uni Unigrams

Col Collocations

POS Parts of Speech

Sur Surface Form

Syn Syntactic Features

D Dictionary

Cor Corpus

All Disambiguates All Words
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5.1 McRoy [1992] - TRUMP

Jacobs’ TRUMP [25] [24] [26] is a system which is used for semantic interpretation, that is, given a phrase

which is ambiguous, it chooses the appropriate meaning of the phrase. It does so using knowledge specific

to the language in consideration. McRoy [38] incorporated a method for word sense disambiguation into

TRUMP. The system aimed at disambiguating every word in the input text. She was one of the first to

explore the combined use of multiple features for word sense disambiguation. This method, unlike the rest

described in the section, is not corpus based, that is, there is no learning from a body of text.

TRUMP uses information about morphology, part of speech, frequency, collocations, semantic context,

syntactic cues and role related expectations. Since it does not learn from a labeled corpus, TRUMP relies on

an exhaustive knowledge base of a specially designed lexicon with 8,775 root words, 10,000 derivations and

13,000 senses. It consists of a core lexicon of coarse senses of a word (stem), morphological derivatives,

part of speech information, syntactic constraints and frequency of usage encoded as primary or secondary

senses. The coarse senses selected from the core lexicon trigger the finer senses in the dynamic lexicons.

Thus, precious processing time is saved by not considering all the senses, as would have been the case if

there were just one lexicon. The finer senses are considered only when relevant. There are three dynamic

lexicons. The collocations lexicon lists collocations and suggested sense. It has over 1700 collocations. The

domain specific lexicon has senses pertaining to specific domains. For example, the military domain has the

‘attack’ sense of the word ‘engage’. The special abstract senses lexicon lists words with abstract senses that

may at times have special meanings differing from the usual. Consider the example in the paper [38]. The

word ‘project’ has the sense ‘transfer’ in the core lexicon but when used in the form below, the object is a

sound and ‘project’ has the sense of ‘a communication event’. This is encoded in the lexicon.

TRUMP’s lexicon has a concept hierarchy and cluster definitions. Each sense is linked to a particular parent

concept and multiple child concepts, thus forming a large semantic network. The lexicon has a thousand

concepts in all. The network serves a dual purpose. Firstly, these related concepts including sibling concepts

are a rich source to infer semantic context and domains. And secondly, the role related expectations can

now be applied to concepts and even portions of the hierarchy instead of individual coding. A set of senses

closely related to a particular concept or topic form a cluster, named after the concept. They too are used

to identify semantic context. Only those senses that are not used independent of the concept, occur in the

cluster. Clusters are again of three kinds. Conceptual clusters are already encoded by the concept hierarchy.
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Situational clusters have senses pertaining to a certain scenario or situation. Functional clusters have senses

that satisfy a particular relation. For example, part - whole relations (gun - barrel, silencer, trigger).

TRUMP automatically weights each of the features, of every sense, on a scale of -10 to 10. The sense with

the highest cumulative score for all the features is chosen as the appropriate sense. If a feature is binary,

that is, if it takes on one of two values, then weights corresponding to each value are chosen empirically.

This weight depends on how strong a cue the particular feature is in comparison with the other cues. Fea-

tures which are satisfied by a finite number of possibilities are weighted differently. Consider role related

expectations. If it is known that the cue to a particular sense must be a color, the number of entries in the

lexicon which satisfy the color constraint gives an idea of how strong a cue it is, if satisfied. Specifically, the

strength of the cue is inversely proportional to the number of entries. This makes intuitive sense since, if all

we know is that the cue is an inanimate object and this cue is satisfied, the cue will have a very small weight

due to the large number of entries which satisfy it. The reciprocal of the number of elements subsumed by

a concept, such as color or inanimate object, is known as specificity. The fewer the words in the concept,

the stronger the probability for the word to have the corresponding sense and larger is the specificity. If a

feature is not satisfied, however, the specificity is mapped to a value between 0 and -10. If a concept having

low specificity is not satisfied we understand that an occurrence of high probability failed to occur, hence,

providing us with a lot of information; a score close to -10 awarded. If the concept had high specificity

leading us to the conclusion that something of low probability failed to occur; a negative score close to 0

assigned. Thus, specificity merits being a natural indicator of preference for a sense as compared to exper-

imentally chosen weights. It may be noted that the concept of specificity has been used by Resnik [66] to

quantify the similarity between two words. He considers theis-a concept hierarchy (A car is an automobile

etc). Given a word, the probability that it satisfies a concept is approximated by the ratio of the number of

words satisfying the concept to the total number of words. Resnik [66] defines information content as the

negative logarithm of this probability, which is equal to the logarithm of its reciprocal. Thus, apart from the

logarithm, which merely changes scale, information content captures the specificity of a concept.

TRUMP was used to tag a subset of the Wall Street Journal, about 2500 words. Even with the limited

number of roots in its lexicon it attempted to disambiguate 91% of the words. The accuracy of the system

was not evaluated due to lack of a gold standard for the corpus. There was thus no study on the utility of

individual features or a comparison between them.
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5.2 Yarowsky [1995]

Yarowsky [74] developed a word sense disambiguation algorithm with minimal and optionally no training

data, known as co-training. The central idea behind co-training is to use a large body of unlabeled text along

with a small set of labeled data to learn a classifier with reasonable accuracy. A necessary condition for

co-training is two or more independentviews. Eachview consists of one or more features of the data which

can predict the class of an instance. Thus, if there are three views, for example, then we have three sets

of features which can each independently classify the instance. In co-training, a classifier is learnt using

each of the views and the small set of labeled data. Yarowsky used two views. One classifier was based

on the assumption that a collocation is indicative of a particular sense of the target word. This is the ‘One

Sense per Collocation’ assumption [73]. The second classifier was based on the assumption that multiple

instances of a word in a document have the same intended sense. This is the ‘One Sense per Discourse’

assumption proposed by Gale, Church and Yarowsky [22]. Part or all of the large unlabeled corpus is then

classified using each of the classifiers individually. Only those classifications are considered for which the

classifiers were confident beyond a certain pre-ascertained threshold. These instances are then added to the

labeled data set and the procedure is repeated until all unlabeled data is tagged or no more instances are

classified by the system. Yarowsky suggests a way to eliminate the requirement of small labeled corpus by

using “seed collocations”. A handful of collocations which are indicative of each of the senses of the target

word are manually identified. Sentences in the unlabeled text which have these collocations are picked out

and assigned the corresponding sense. These sentences act as the initial labeled data set.

Experiments were conducted using unannotated text consisting of news articles, scientific abstracts, spoken

transcripts and novels. The text had around 460 million words. The words to be disambiguated were selected

randomly from the words on which work has been done earlier. These includetank, space, motion and plant

on which Scḧutze [67] had performed word sense disambiguation using an unsupervised algorithm. The

system had an accuracy of 96.7% on words studied by Schütze who had achieved an accuracy of 92.2%.

However, it should be noted that Schütze used a completely unsupervised approach. The system also per-

formed comparably, if not better in some cases, than supervised learning methods. The final classifier based

on both collocations and ‘one sense per discourse’ heuristic had a one percent improvement of performance

than the classifier based solely on collocations (accuracies of 96.5% and 95.5%).
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5.3 Ng and Lee [1996] - LEXAS

Ng and Lee [53] like McRoy were one of earliest to propose a word sense disambiguation system with

large set of knowledge sources. Their implementation LEXAS is a nearest neighbor approach. The various

knowledge sources utilized are listed in Table73 and described below:

Table 73: Ng and Lee Feature Sets

Notation Description

P
��, P

�� and P
�� parts of speech of 3 words to the left

P�, P� and P� parts of speech of 3 words to the right

M Morphology (Singular, plural or verb form)

K1, K2, ... co-occurring words; binary features (0, 1)

C1, C2, ..., C9 9 Collocations; binary features (0, 1)

V1, V2, ... verbs in verb object relation with target word

� Part of Speech: The features L�, L� and L� have the form L� where L� takes the part of speech of

the wordw positions to the left of the target word, as its value. Similarly, the features R�, R� and R�

take on the part of speech of the words to the right of the target word.

� Morphology: M stands for the morphological form of the target word.M takes on a value depending

on the part of speech of the word. If the word is a noun,M is either singular or plural. In case of

verbs,M is either the infinitive (for eg. in case of eat), present-participle(eg. eats), past(eg. ate),

present-participle( eg. eating) or past-participle(eg. eaten).

� Co-occurrences: K1, ..., Km correspond to the target word’sm co-occurring words. This set of co-

occurring words is elected for each of the target words based on conditional probability. All words in

the training corpus are considered as probable co-occurrences. A count (Nc) is made of the number

of times a candidate co-occurrence (Kc say) occurs in the training text and in those instances a count

(Nc,i) of the number of times the target word has a certain sense i. Kc is chosen as a co-occurrence

only if the ratio of Nc,i and Nc is greater than a certain pre-ascertained threshold. Ng and Lee chose
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a threshold of .8. Additionally, Kc must occur at least 5 times in the training corpus such that the

target word has sense i. At most 5 co-occurring words were chosen for every sense of the target word.

Thus the number of co-occurrence features is at most 5 x n, if n is thetotal number of senses. Given

a test instance, these features take on a value of 1 or 0 depending on the presence or absence of these

co-occurring words in the test sentence.

� Collocations: C1, ..., C9 are collocations involving the target word. They too are extracted by a

similar application of conditional probability, picking those that are suggestive of a particular sense.

Collocations differ from occurrences primarily as they prescribe a fixed sequence of the words. For

example,interest rate is a collocation asrate is present immediately afterinterest. The phraserate

your interest does not have the collocationinterest rate. For a given sentence, Ng and Lee considered

9 possible sequence of words as candidate collocations. This set of 9 collocations is summarized by

the table in their paper [53] reproduced below in table 74. These features too, like co-occurrences are

binary. Given a test sentence, the features take on values 1 or 0 depending on presence or absence of

appropriate collocation.

� Verbs: Verbs (V1,...) in a verb object relation with the target word and indicative of a particular sense

of the noun being disambiguated. Selection of verbs is again based on conditional probability.

LEXAS constructs an exemplar-based classifier for each target word. The training examples after conver-

sion to corresponding feature vectors are stored. Given a test example, the corresponding feature vector is

compared with the feature vectors of the training examples. Ng and Lee implemented the nearest neighbor

and not the k-nearest algorithm, thus, the sense of the training example closest to the test set was chosen as

the intended sense of the word, in the context.

The system was evaluated on theinterest [13] data. 100 experiments were conducted using randomly sam-

pled 600 sentences as test data and the remaining 1769 as training data. The authors achieved an accuracy

of 87.4% with a standard deviation of 1.37%. The authors studied the contribution of individual sources of

information by conducting experiments with individual sources of information. They found that collocations

were most accurate (80.2%) followed by part of speech and morphological form (77.2%). Co-occurrences

(62.0%) and verb object relations (43.5%) were found not to be as helpful. The authors, who had used a one
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Table 74: Candidate collocation Sequences.

Notation Left Offset Right Offset Collocation Example

C
����� -1 -1 accrued interest

C��� 1 1 interest rate

C
����� -2 -1 principal and interest

C��� 1 2 interest and dividends

C
����� -3 -1 sale of an interest

C
���� -2 1 in the interest of

C
���� -1 2 an interest in a

C��� 1 3 interest on the bonds

sentence window for co-occurrences, believe that a bigger window will help. This, however, is the extent of

the study of the features. No study was made on the redundancy and complementarity of the features.

5.4 Lin [1997]

Lin’s [35] developed a supervised approach to word sense disambiguation which did not require a classifier

for every word to be disambiguated. He proposed that, since, the different senses of a word are more or

less used in disparate contexts, the sense of a word is usually similar to the sense of adifferent word having

a similar context. Given a test instance, the system identifies the local context of the target word. It then

identifies other words in the training corpus which have similar contexts. The sense of the target word which

is most similar to these words is chosen as the desired sense.

This approach eliminates the need of a sense tagged corpus for every word to be disambiguated. A smaller

training corpus is used like Yarowsky [74], however, the basic methodology of disambiguation is very

different. The tradeoff of a small training corpus is the lack of modeling specific for every word, thereby

affecting accuracy. Another distinction of Lin’s [35] methodology is that the system aims to disambiguate

all the words in the input text as compared to just certain target words given their context.

Lin [35] relies completely on syntactic dependencies to capture the context of a word. Syntactic dependen-
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cies are grammatical relations such as subject-verb, adjunct-verb and verb-object relations shared by two

words in a sentence. It may be noted that adjuncts are modifiers of the verb which are not necessary for the

validity of the sentence. For example:

����	!���	���	���������������� (27)

In the above sentence,Damien andplayed are related by the subject-verb relation,played andguitar form

the verb - object pair, while,played andadmirably share the verb - adjunct relation. Without the adjunct the

sentence is still grammatically valid. It may also be noted that in all such word pairs, one of them is known

as the head while the other as the modifier. For example, the verbs are modified by their objects and adjuncts.

The author captures the context of a word with sets of the above mentioned relations. Each set constitutes

- the type of syntactic dependency the word is involved in, the word with which it shares the relation and

whether the target word is the head or modifier. Associated with each such set is its suggestiveness to a

particular sense. This is captured by another trio - the word related to the target word via the syntactic

relation, the number of times the word was found in the same context and the log likelihood ratio indicating

the suggestiveness of a particular sense, calculated following Dunning [19].

A broad coverage parser is used to parse the text. A database of local contexts(lc) and word-frequency-

likelihood(C(lc)) information is extracted from the training corpus. The Walls Street Journal corpus was

used for this purpose. The system was evaluated on a subset of SemCor [39], the “press reportage” part.

SemCor is text taken from the Brown corpus. All the nouns, verbs, adjectives and adverbs in it are tagged

with senses from the WordNet. This is primarily because SemCor is the only significant repository of

text with all words sense tagged. Lin believes that the subtle distinctions in senses are hard for even a

human to differentiate and hence used allowed an assigned sense to be correct if it was close enough to the

correct sense. With varying levels of strictness the system achieved accuracies between 59% and 67%. The

contributions of individual dependency relations to the final disambiguation were not studied.

5.5 Wilks and Stevenson [1998]

Wilks and Stevenson [70] like McRoy [38] and Lin [35] developed a method for word sense disambiguation

on all words of a text. They too use a dictionary. But unlike McRoy [38] they use a training corpus as well

and thus have a empirical learning approach. They use the Longman Dictionary of Contemporary English
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(LDOCE) [59] to assign senses. They use a set of filters and partial taggers. The filters weed out senses

which do not agree with certain sources of information, while the partial taggers give a set of probable senses

based on certain other sources of information. Following is a list of filters and partial taggers used:

� Part of Speech Filter: The first feature to be utilized is the part of speech. Only those senses corre-

sponding to the part of speech assigned by the tagger merit future consideration. Brill Tagger [8] was

used to tag the words.

� Dictionary Definitions Partial Tagger: Semantic context is captured to some extent by a modified

version of the simulated annealing proposed by Cowie [17]. Lesk [34] had originally proposed a

way to disambiguate the sense of a word by choosing that sense whose definition has the maximum

number of words in common with that of the definitions of other words in the sentence. If A, B, C

and D are a sequence of words in a sentence and the senses of A, B and D are known, the definitions

of the correct senses of A, B and D may be used to determine the correct sense of C. However, if we

are to determine the correct sense of all the words, we have to start with a guess of the sense of all

the words. The sense of a word (B say) may be changed based on the definitions of the others. Then,

the sense of C may be changed, in a similar fashion. This raises a doubt on the correct sense of B

as it was calculated based on the wrong sense of C. Cowie [17] came up with a numerical method to

solve this problem which comes under the general class of simulated annealing. Wilks and Stevenson

propose a further modification of this method, wherein, the method gave out a set of most probable

senses for each word and not just one. Additionally, the original approach had a bias to senses with

longer dictionary definitions. The method was thus modified such that the number of matches was

divided by the total number of words in the definition, thereby, eliminating the bias.

� Pragmatic Codes Partial Tagger: LDOCE is rich in rules which help determine the broad subject

pertaining to a sense. These rules, known as pragmatic codes, are used to disambiguate nouns. Senses

of nouns have been shown to be sensitive to the topic being discussed (Gale [22]). Once again a mod-

ified form of simulated annealing algorithm is used so that the number of pragmatic codes indicating

a certain subject area is maximized.

� Selectional Restriction Partial Tagger: Selectional restrictions encoded in LDOCE capture role

related expectations. LDOCE has rules for every content word listed in it. Thirty-five semantic
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classes of nouns such as ‘Human’, ‘Solid’ and ‘Plant’, defined in it, are assigned to each sense of

all the nouns, verbs, adjectives and adverbs. A verb is assigned the classes of its expected subject,

object and indirect object. Adjectives - the noun they modify and Adverbs - their modifier. Syntactic

relations amongst the words in the input are identified via the syntactic analyzer(Stevenson [68]).

Those senses are chosen which uphold the restrictions encoded.

Like Yarowsky [74] a decision list is used as the classifier. It has an ordered set of rules along with an

associated sense. The sense corresponding to the first rule satisfied by an instance is chosen as the desired

sense of the target word in that instance. A supervised learning algorithm learns an appropriate decision list

based on the results of the partial taggers, the correct sense, the frequency distribution of various senses and

a set of 10 collocations. The collocations chosen comprise the first noun, verb, and preposition to the left

and right of the word being disambiguated. It also consists of the first and second words to the left and right

of the target word. Given a test sentence, the taggers and filters are applied on it. The results along with the

frequency information and the collocations set is then given to the decision list which does the classification.

The authors believe that even though the decision list is trained on instances corresponding to a few words,

it may be used to classify any word in LDOCE.

The system was tested on a subset of SemCor [39]. It may be noted that Wilks and Stevenson [70] and

Lin [35] who also had an all words disambiguation system evaluated it on a subset of SemCor as well. As

the system was based on the LDOCE senses, the mapping between the LDOCE and WordNet senses done

by Bruce and Guthrie [12] was used. The authors found that they received accuracies of around 55-58%

when the dictionary definitions, pragmatic codes and selectional restrictions were used individually. When

all the sources of information were used together they achieved an accuracy of 59%. The authors believe

that the increase encourages the use of multiple sources of information. The dictionary definitions were

most useful for disambiguation, however, selectional restrictions and pragmatic codes, in that order, were

not far behind. The authors do not give details on the redundancy and complementarity of the knowledge

sources.
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5.6 Yarowsky [1999]

Yarowsky [75] describes a word sense disambiguation system using hierarchical decision lists and a rich set

of features. Hierarchical decision lists allow modeling specific to certain kinds of instances. For example,

we could want to model the classifier differently for different parts of speech or surface forms. The hierarchy

is grown and validated on the training data itself to check if the addition has improved accuracy. If not the

addition is undone. At each node, the training data is split and all learning in this path is based on this subset

of the data. This is similar to decision trees, however, the number of nodes is much smaller. Thus although,

there is some modeling specific to certain key features, training data is not split as much as in decision trees.

Yarowsky [75] uses a rich set of features which includes a combination of positional options and word

information listed in Table75. The positional option lists the position of the word relative to the target word,

whose information will be used. The positions considered are are described below:

� Relative Offset: This corresponds to words which are close to the target word. A relative offset of

1 signifies the information of the word on the immediate right of the target word will be utilized.

Similarly, -2 corresponds to information of word at two positions to the left of the target word.-2, -1

and1 are the possible values considered.

� Syntactically related words: This corresponds to words which are syntactically related to the target

word. For example, the words which share subject–verb or verb–object relation with the target word.

� Co-occurrences: Words within a window of� k words around the target word, where k is a pre-

ascertained constant.

� Collocations: Word sequences corresponding to C��� and C
���� as per the notation described earlier.

It may be noted that the former sequence, corresponding to the word to one position to the right and a

word two positions to the right of the target word, was used by Ng and Lee [53]. C
���� corresponding

to the word to the left and right of the target word was not used by them.

The information used of words at these positions is theWord Information. The kinds ofWord Information

used are described below:

� Surface form of the word, for example whether the word iseat, eats, ate or eaten.
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� Root of the word, for example the root word of the words mentioned above iseat.

� Part of speech of word, such as proper noun and verb in past tense.

� Answer to certain questions, such as, if the target word is capitalized.

Table 75: Positional Options and Word Information

Positional Options Word Information

Relative offset (1, -1, -2) Literal (surface form)

Target word (0) Lemma (stem)

Collocations Part of Speech

Co-occurrences(�k word window) Question (e.g. is word capitalized)

Syntactic relations

Due to the many combinations possible between the positional options and word information, only those

features are selected which are indicative of a particular sense. The conditional probability criterion as

mentioned earlier is employed for the purpose. The system took part in the Senseval-1 exercise held in

the summer of 1998 and achieved and accuracy of 78.4%. No analysis of the contribution of individual

knowledge sources was made.

5.7 Pedersen [2001]

Pedersen [55] describes a system for word sense disambiguation using just bigrams as source of information.

He conducts experiments with decision trees, decision stump, bayesian classifier and a majority classifier. A

decision stump is a one node decision tree. The feature which best disambiguates the training data is selected

for the node. Power divergence statistic [18] and the Dice Coefficient were both used independently to select

the appropriate bigrams. A hundred bigrams each were selected for each task based on power divergence

and the Dice Coefficient. There must be at least five instances of these bigrams in the training data.

Senseval-1 data was used for training and evaluation. A decision tree along with the power divergence

statistic gave the best results with accuracies of 19 out of the total 36 tasks being above the best results in
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Senseval-1. Pedersen believes that bigrams with decision trees can be very accurate in predicting the correct

sense of a word. The significance of this result lies in the fact that bigrams, which are a kind of lexical

feature, are easy to capture and yet very powerful in disambiguation. Thus, decision trees of bigrams act

as a powerful baseline to build on and thus the added gravity in determining the worth of utilizing more

complex sources of information. He believes that in case of word sense disambiguation, identifying good

features to use for disambiguation is vital. A good feature will get good results with a number of learning

algorithms, but the converse is not true. Pedersen also points out that decision trees help understand the

relations between the features and are thus a good choice to use as they will in turn help identify features

that are most useful in discriminating the senses of a words.

5.8 Lee and Ng [2002]

Lee and Ng [33] have performed experiments with a number of knowledge sources and supervised learning

algorithms (listed in Table76). The study is probably the first which takes a comprehensive look at the

knowledge sources, algorithms and the interaction between them.

Table 76: Lee and Ng - Sources of Knowledge and Supervised Learning Algorithms

Sources of Knowledge Supervised Learning Algorithms

Part of speech of neighboring wordsSupport Vector Machines

Unigrams Naive Bayes

Local Collocations AdaBoost

Syntactic Relations Decision Trees

Since this thesis is focussed on knowledge sources, the behavior of the various algorithms is beyond its

scope. The sources of knowledge studied are the following:

� Part of speech of three words to the left and right of the target word along with that of the target word.

Ratnaparkhi [65] is used to part of speech tag the data.

� Unigrams that are indicative of a particular sense of the target word They are selected based on the
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conditional probability of a sense given the unigram, as discussed earlier.

� Word sequences occurring at pre-decided positions relative to the target word are considered as can-

didate collocations. The eleven pre-decided positions are given below:

C
�����, C���, C

�����, C���, C
�����, C

����, C���, C
�����, C

����, C
����, C���

Given C��� C stands for collocation and consists of tokens from position i to position j, relative to the

target word. It may be noted that these subsume the 9 collocational features used by Ng and Lee [53].

The two additions are C
����� and C���. These two are unique since they do not include the word

adjacent to the target word.

� The Charniak parser [14] is used to parse the instances enabling the use of various syntactic relations

as features. The relations used depend on the part of speech of the target word. If a noun, the following

features are used: head word of parent phrase, its part of speech, its voice (active or passive) and its

relative position from the target word. In case of verbs, the following six features are used: a word

closest to the target word on its left which has the target word as parent, its part of speech, similar

features based on a word to the right, the part of speech and voice of the target word. If the word to

be disambiguated is an adjective, just two features are used - the head word of its parent phrase along

with its part of speech.

The experiments were done on Senseval-1 and Senseval-2 [20] data. As mentioned earlier standard test

and training texts occur for these data. The best results were achieved using all knowledge sources and

support vector machine. Since, this thesis is on decision trees all further discussion of results will be on

experiments conducted with them. All knowledge sources out perform the best even in case of decision

trees when run on Senseval-1 data (accuracy of 73.4%). On Senseval-2 data, the system using collocations

(accuracy of 57.2%) as the knowledge source is found to be best. In fact, part of speech tags (accuracy of

55.3%) and syntactic relations (54.2%) also do better than the combined classifier. The unigrams were found

to be the weakest sources of knowledge when run on both Senseval-1 (accuracy of 66.2%) and Senseval-2

(accuracy of 50.9%) data. Based on their experiments, the authors conclude that no knowledge source alone

encompasses the knowledge provided by other. On the contrary, a combination of the many sources has

yielded best results.
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5.9 Yarowsky and Florian [2002]

Yarowsky and Florian [76] have done experiments on word sense disambiguation using six supervised

learning algorithms and variations of the data representation. That is, apart from using various knowl-

edge sources, they conducted experiments with varying context size, size of training data and number of

senses distinctions per task. The knowledge sources and algorithms studied are listed in Table77. The au-

thors classify the algorithms into two categories. The decision list and transformation based learning model

(TBL) are discriminative algorithms which rely on a small subset of features for disambiguation while the

rest are agglomerative classifiers which base their decision on a weighted sum of all the knowledge sources.

Table 77: Yarowsky and Florian - Sources of Knowledge and Supervised Learning Algorithms

Sources of Knowledge Supervised Learning Algorithms

Bag of words Three kinds of Bayes Classifier

Collocations Decision List

Syntactic Relations Transformation based learning model (TBL)

The knowledge sources used are classified into three categories. One, bag of words, which includes mor-

phological information such as the lemma, apart from the surface form of the words. Two, local context

captured by collocations, which includes bigrams and trigrams within a certain window around the target

word. And three, syntactic features such as verb object relationship and subject verb relations.

Experiments were conducted on Senseval-2 data. The experiments reveal that on dropping any of the three

categories of knowledge sources, there is a drop in accuracy of the system for all the algorithms considered.

Yarowsky and Florian note that the drop is significant for aggregative classifiers and not for the discrimina-

tive classifiers which is in support of their theory that discriminative classifiers make their decision based on

a small set of features. Decision list for example, will classify based on a single most suggestive feature. The

drop in performance of the decision lists with any of the three kinds of information was the most uniform

(2.3% - 4.5%). It may be noted, that although decision trees were not studied in this paper, they too are a

kind of discriminative classifier, who make decisions based on a small subset of features. Of course, not as

much so as the decision lists.
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The drop in performance when the bag of words knowledge source was left out showed a lot of variance

with the different algorithms. While TBL was almost not affected, a drop of only 0.5%, the Bayes had

a drop of 15%. On an average, collocations boosted the performance by 3.3%. As discovered by Ng and

Lee [53], syntactic features were again found to provide only marginal improvement in performance (1.4%).

Additionally, Yarowsky and Florian discover that there is only a little improvement in disambiguation of

nouns with syntactic features if collocations are being used already. However, verbs and adjectives show

significant improvement with syntactic features. Yarowsky and Florian, like Lee and Ng [33] conclude that

a single knowledge source alone does not provide the best results and a suitable combination would be ideal.

5.10 Pedersen [2002]

Pedersen [56] did a pairwise study of the various systems which participated in the Senseval-2 exercise to

disambiguate the English and Spanish tasks. The study primarily looks as the systems as black boxes and

does not delve into the algorithms involved or the knowledge sources used. Pedersen [56] introduces the

termoptimal combination which is defined as follows:

Optimal combination is the accuracy that could be attained by a hypothetical tool called an

optimal combiner that accepts as input the sense assignments for a test instance as generated by

several different systems. It is able to select the correct sense from these inputs, and will only

be wrong when none of the sense assignments is correct.

Pedersen states that albeit hypothetical, the optimal combination provides an upper bound to the accuracy

that may be attained by combining multiple systems. In order to determine the optimum combination of a

pair of systems, the test instances were put one of four categories - correctly classified by both systems, cor-

rectly classified by system one but not by two, correctly classified by system two and not one and incorrectly

classified by both systems. The optimum combination is then determined by the ratio of number of instances

in the first three categories to the total number of instances. Pedersen also studies the similarity between

each pair of systems, that is, how often is the classification of system one, the same as that of system two,

irrespective of whether the classification is correct or not. The Kappa statistic [15] is used for this purpose.

He believes that those pairs which have low similarity and high optimal combination are of interest as these

pairs are getting different kinds of instances right and if combined appropriately may yield a system with
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high accuracy. He points out that such systems are complimentary as in a number of instances which are

tagged incorrectly a system are tagged correctly by the other. Of course, systems with high similarity and

high optimal combination provide high accuracy without combination itself. The author points out that such

systems may have a high optimal combination but they are also highly redundant as in a large number of

instances are tagged identically by the two systems. Combining systems will be suitable only if the gain in

accuracy is worth the effort.

All the research above considered, there still remain questions regarding the use of multiple sources of

knowledge for word sense disambiguation. The Lee and Ng [33] and the Yarowsky and Florian [76] papers

especially show the benefit of multiple knowledge sources but do not shed light on the upper bound of

the accuracy of a system using multiple sources. Pedersen [56] describes a method to determine an upper

bound on the accuracy achievable by a set of systems. This thesis aims at extending this idea to determine an

upper bound in accuracy achievable by one system by combining multiple sources of information. Given two

sources of knowledge - A and B say, a classifier based on each alone may achieve a certain number of correct

classifications. What is of interest is how many instances correctly classified using A are also correctly

classified using B. This gives an idea of the redundancy in the information attained from knowledge sources

A and B. On the other hand, the number of instances correctly classified using A which were wrongly

classified on using B, gives an idea of the amount A complements the information attained by B alone.

Similarly, also of interest is the amount B complements A. This idea of redundancy and complementarity

of knowledge sources is an instantiation of the redundancy and complementarity of systems described in

Pedersen [56]. Knowledge sources apart, systems may be redundant or compliments due to their algorithm

as well. These are some of the questions this thesis hopes to address regarding syntactic cues and lexical

features.
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6 CONCLUSIONS

A rich set of features may be used to represent written text. This thesis suggests that lexical and syntactic

features are both useful for word sense disambiguation. It is expected that a number of instances which are

correctly tagged using lexical features are also correctly disambiguated using syntactic features. However,

this thesis takes the view that there are a significant number of instances which are tagged correctly just by

the lexical features or the syntactic features alone. A suitable ensemble technique may be used to combine

the lexical and syntactic features to benefit from this complementarity and attain higher accuracies than

individual features. We use the Senseval-2, Senseval-1,line, hard, serve and interest data which together

consist of around 50,000 sense tagged instances and almost all the sense tagged text available in the research

community. In order to utilize syntactic features for word sense disambiguation, we developed a package

posSenseval [48] to part of speech tag the data using the Brill Tagger [8] [9] [10]. We identified a

limitation in the Brill Tagger and corrected it by a technique known asGuaranteed Pre-Tagging described

by Mohammad and Pedersen [42]. We developed the packageparseSenseval [47] to parse the data

using the Collins Parser. We identified and documented spurious instances which did not conform to the

data format and provide a cleaned up version of the data.

We conducted an extensive array of disambiguation experiments on the part of speech tagged and parsed data

utilizing lexical and syntactic features. We found both lexical and syntactic features produced reasonably

good accuracies when used individually. We show that the part of speech of the word to the right of the

target word is particularly useful for sense disambiguation as compared to all the other individual word part

of speech features. We show that nouns benefit from the part of speech of words on its either side while verbs

and adjectives gain maximum from the part of speech of words immediately to the right. A combination of

individual part of speech tags attains even better accuracies and we identify the combinations (P�, P�) and

(P
��, P�, P�) as the most potent part of speech combinations. By potent we mean that these combinations

attain very high accuracies for all data and albeit, combinations formed by many more part of speech features

might at times yield better results, the improvement is not significant. We show that the head word of a

phrase (head for short) is particularly useful to disambiguate adjectives. The head and the head word of the

parent phrase (parent for short) have been useful for nouns. We identify the head and parent combination

as the most potent parse feature combination. This combination, as compared to the other parse feature

combinations, has been shown to give consistently high accuracies for all the data.
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We introduce the measures ofBaseline Ensemble andOptimal Ensemble to quantify the redundancy and

complementarity amongst two separate feature sets. We found that the syntactic and lexical features showed

a considerable amount of complementarity. This suggests that a suitable ensemble may indeed produce re-

sults significantly better than a system based on just lexical or syntactic features. We conducted experiments

using a very simple ensemble technique to show that we do indeed get an increase in accuracy by combining

lexical and syntactic features. The discriminating knowledge provided by the part of speech of the word

immediately following the target word (P�) is shown to be less similar to lexical features than other relevant

individual part of speech features. This along with the high optimal combination values with the lexical fea-

tures suggests that P� is significantly complementary to the lexical features as compared to other individual

part of speech features. We also show that the optimal combination is in general lower within syntactic fea-

tures and lexical features as compared to across syntactic and lexical features. This again suggests that there

is significant benefit to combining lexical and syntactic features. We show that the decision tree created by

the combination of the target word part of speech, and the parts of speech of its two adjacent words performs

best in combination with the lexical features as opposed to the other combinations of syntactic and lexical

features.

By comparing the results of sense disambiguation using data which was part of speech tagged with and

withoutGuaranteed Pre-Tagging [42], we show that the former has improved word sense disambiguation.
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7 Future Work

In this thesis we used a very simple ensemble technique to combine lexical and syntactic features, which

achieved reasonable accuracies. We also showed the optimal ensemble which acts as an upper bound to

the accuracy achieved on combining two sets of features. A question that merits consideration is choosing

between an ensemble of decision trees based on lexical and syntactic features versus one decision tree

created by a combination of lexical and syntactic features. The former has the advantage of having separate

trees based on different kinds of features enabling us to draw conclusions about the interactions amongst a

particular kind of features which suggests the intended sense. However, creating one tree will yield higher

accuracies if lexical and syntactic features share a relation as described below.

Consider a lexical feature L and a syntactic feature S such thatL = 1 AND S = 1 isstrongly suggestive of a

sense X. Two individual trees created based on L and S separately may not be good at disambiguation and

thus the ensemble itself is not expected to do much better. However, a decision tree created based on the

combination of features L and S is expected to correctly identifying X as the intended sense. At present

it remains unclear if lexical and syntactic relations share such relations which suggest a combination of

features in a single decision tree.

This thesis demonstrates the effects of certain lexical and syntactic features on test instances in general.

However, we have identified certain features to be particularly useful for target words of certain parts of

speech while not so much for other. For example, the head word of the phrase is particularly suited for

adjectives and the head word of the parent phrase has been shown to be useful in disambiguation of only the

nouns. Part of speech features of words to the right of the target word achieved higher accuracies for verbs

and adjectives while nouns were helped by part of speech features on either side. We believe that the overall

accuracy of the system may be improved if we use a different optimal set of features is used to disambiguate

words of different parts of speech.

This thesis uses decision trees for word sense disambiguation but we believe that the redundancy and com-

plementarity of lexical and syntactic features is independent of the learning algorithm. Unigrams, due to

the large number of features involved, may be better suited for Naive Bayesian classifiers. Part of speech

and parse features may be more suited for decision trees and other machine learning algorithms that build

representation models of the training data. It will be of interest to investigate the redundancy and comple-
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mentarity of feature sets across a range of supervised learning algorithms. If the complementarity varies,

it will mean that different learning algorithms capture differing discriminating knowledge from the same

features and thus impact the complementarity and redundancy across two sets of features.
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