

  Finite-state automata (FSA)
 Regular languages
 Regular expressions

/baa+!/

q0 q1 q2 q3 q4

b a a !

a

state transition final
state

 baa!
 baaa!
 baaaa!
 baaaaa!
 ...

a b a ! b

q0

0 1 2 3 4

b a a !
a

REJECT

b a a a

q0 q1 q2 q3 q3 q4

!

0 1 2 3 4

b a a !
a

ACCEPT

  Q: a finite set of N states
◦  Q = {q0, q1, q2, q3, q4}

  Σ: a finite input alphabet of symbols
◦  Σ = {a, b, !}

  q0: the start state
  F: the set of final states
◦  F = {q4}

  δ(q,i): transition function
◦  Given state q and input symbol i, return new state q'
◦  δ(q3,!)  q4

Input
State b a !

0 1 ϕ ϕ
1 ϕ 2 ϕ
2 ϕ 3 ϕ
3 ϕ 3 4
4: ϕ ϕ ϕ

function D-RECOGNIZE (tape, machine) returns accept or reject
 index  Beginning of tape
 current-state  Initial state of machine
 loop
 if End of input has been reached then
 if current-state is an accept state then
 return accept
 else
 return reject
 elsif transition-table [current-state, tape[index]] is empty then
 return reject
 else
 current-state  transition-table [current-state, tape[index]]
 index  index + 1
end

q0 q1 q2 q3 q4

b a a !

a

qF a

!

b

! b ! b
b

a

!

q0 q1 q2 q3 q4

b a a !

a

qF

=
= =

=

 Deterministic vs. Non-deterministic FSAs

 Epsilon (ε) transitions

 Backup: add markers at choice points,
then possibly revisit unexplored arcs at
marked choice point.

 Look-ahead: look ahead in input
 Parallelism: look at alternatives in parallel

Input
State b a ! ε

0 1 ϕ ϕ ϕ
1 ϕ 2 ϕ ϕ
2 ϕ 2,3 ϕ ϕ
3 ϕ ϕ 4 ϕ
4 ϕ ϕ ϕ ϕ

  Equivalence of DFSAs and NFSAs
◦  For every NFSA, there is an equivalent DFSA.

  Recognition is a search

  ϕ is a regular language

  ∀a ∈ Σ ∪ ε, {a} is a regular language

  If L1 and L2 are regular languages, then so are:
◦  L1· L2 = {xy | x ∈ L1 , y ∈ L2 },

the concatenation of L1 and L2
◦  L1 ∪ L2, the union or disjunction of L1 and L2
◦  L1∗, the Kleene closure of L1

  Regular languages are characterized by FSAs

  Regular languages are closed under
concatenation, Kleene closure, union.

  An automaton that maps between two sets of symbols
  A two-tape automaton that recognizes or generates

pairs of strings
  Think of an FST as an FSA with two symbol strings on

each arc
◦  One symbol string from each tape

 As a recognizer
 As a generator
 As a translator
 As a set relater

In assignment 1: You will work with FST composition
Similar to concatenation of FSA’s, but two internal conversions compiled

into more efficient single transition a:c
FST’s have input/output pair on arcs instead of a single read-only input
Compose: Performs transitive closure to get single arc with input

symbol of first automaton and output symbol of last automaton

T_ab T_bc T_ac

from soundexutils import compose
output = compose(’a’, T_ab, T_bc)
 ’c’

T_ab T_bc T_ac

  Definitions and Problems
◦ What is Morphology?
◦ Topology of Morphologies

  Approaches to Computational Morphology
◦  Lexicons and Rules
◦ Computational Morphology Approaches

  Study of the way words are built up from
smaller meaning bearing units of language

  Smallest meaning bearing units are called
morphemes

fox has morpheme fox
cats has two morphemes cat and –s

  Two classes of morphemes:
◦  Stems: supplies the main meaning
◦  Affixes: add additional meaning

  Morpheme+Morpheme+Morpheme+…
  Stems: also called lemma, base form, root, lexeme
◦  hope+ing  hoping hop  hopping

  Affixes
◦  Prefixes: Antidisestablishmentarianism
◦  Suffixes: Antidisestablishmentarianism

  Agglutinative Languages
◦  uygarlaştıramadıklarımızdanmışsınızcasına
◦  uygar+laş+tır+ama+dık+lar+ımız+dan+mış+sınız+casına
◦  Behaving as if you are among those whom we could not cause

to become civilized

 Affixes continued:
◦  Infixes: hingi (borrow) – humingi (borrower) in Tagalog
◦  Circumfixes: sagen (say) – gesagt (said) in German

 Concatenative vs. non-concatenative
(infix, circumfix, templatic)

 Derivational vs. inflectional

 Regular vs. irregular

 Roots and Patterns

 بوكتم

 K T B ب

 ? ? مَ و ?

 ت ك

וכת
 ב

 ב

 ? ? ו ?

 ת כ

maktuub
written

ktuuv
written

 KTB: writing “stuff”

 כתב

 מכתב

 כתב

 כתיב
spelling

 כתובת
address

 كتب

 كاتب

 مكتوب

 كتاب
book

 مكتبة
library

 مكتب
office

write

writer

letter

  Stem + morpheme -> word with part of speech
different from the stem

  Nominalization: computerization, appointee, killer,
fuzziness

  Formation of adjectives: computational, clueless,
embraceable

  CatVar: Categorial Variation Database
http://clipdemos.umiacs.umd.edu/catvar/

  Stem + morpheme -> word with same
part of speech as the stem

 Adds: tense, number, person, mood, aspect
  Five verb forms in English
 Other languages have (lots more)

  Nouns have simple inflectional morphology
◦  cat
◦  cat+s, cat+’s

  Verbs have more complex morphology

  Nouns
◦ Cat/Cats
◦ Mouse/Mice, Ox, Oxen, Goose, Geese

  Verbs
◦ Walk/Walked
◦ Go/Went, Fly/Flew

Morphological Form Classes Regularly Inflected Verbs

Stem walk merge try map

-s form walks merges tries maps

-ing form walking merging trying mapping
Past form or –ed participle walked merged tried mapped

Morphological Form Classes Irregularly Inflected Verbs

Stem eat catch cut

-s form eats catches cuts

-ing form eating catching cutting

Past form ate caught cut

-ed participle eaten caught cut

Recognizing that a word (like foxes) breaks down into
component morphemes (fox and -es) and building a
structured representation.

WORD STEM (+FEATURES)*
cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
ducks (duck +N +PL) or (duck +V +3SG)
merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or
 (catch +V +PAST)

  Approaches
◦  lexicon only
◦  lexicon and rules
  finite-state automata
  finite-state transducers
◦  rules only

acclaim acclaim N
acclaim acclaim $V+0$
acclaimed acclaim $V+ed$
acclaimed acclaim $V+en$
acclaiming acclaim $V+ing$
acclaims acclaim $N+s$
acclaims acclaim $V+s$
acclamation acclamation N
acclamations acclamation $N+s$
acclimate acclimate $V+0$
acclimated acclimate $V+ed$
acclimated acclimate $V+en$
acclimates acclimate $V+s$
acclimating acclimate $V+ing$

•  The lexicon lists all surface level and lexical level pairs

•  Analysis/generation easy

•  Very large for English

•  What about Arabic or
 Turkish?

  Approaches
◦  Lexicon only
◦  Lexicon and rules
  Finite-state automata
  Finite-state transducers
◦ Rules only

reg-noun Irreg-pl-noun Irreg-sg-noun plural

fox
cat
dog

geese
sheep
mice

goose
sheep
mouse

-s

•  English noun lexicon

•  English noun
 rule

reg-verb-stem irreg-verb-stem irreg-past-verb past past-part pres-part 3sg
walk
fry
talk
impeach

cut
speak
spoken
sing
sang

caught
ate
eaten

-ed -ed -ing -s

  Finite-state automata (FSA)
◦  Recognizer

  Finite-state transducers (FST)
◦  input-output pair

  Characters correspond to pairs, written a:b
  If “a:a”, write “a” for shorthand
  # = word boundary
  ^ = morpheme boundary
  Other = “any feasible pair that is not in this transducer”

Name Rule Description Example
Consonant
Doubling

1-letter consonant doubled before -ing/-ed beg/begging

E-deletion Silent e dropped before -ing and -ed make/making

E-insertion e added after s,z,x,ch,sh before s watch/watches

Y-replacement -y changes to -ie before -s, -i before -ed try/tries

K-insertion verbs ending with vowel + -c add -k panic/panicked

 Rules to move from intermediate level to
surface level

  a → b / c__d
 Rewrite a as b when it occurs between

c and d

ε → e /

x
s
z

^ __ s #

How would we represent this in NLTK?
from nltk_contrib.fst import fst
f = fst.FST('pluralize')
f.add_state('q0')
f.initial_state = 'q0'
f.set_final('q0')
f.add_state('q1')
f.add_arc('q0', 'q1', 'z', 'z')

Tlex

Te-insert

  Parse Example 1: unionizable
◦  union +ize +able
◦  un+ ion +ize +able

  Parse Example 2: assess
◦  assessV
◦  assN +essN

  Parse Example 3: tender
◦  tenderAJ
◦  tenNum+dAJ+erCMP

 Accept first successful structure

 Run parser through all possible paths

 Bias the search in some manner

  Approaches
◦  lexicon only
◦  lexicon and rules
  finite-state automata
  finite-state transducers
◦  rules only

  Lexicon-Free FST Approach
  By Martin Porter (1980)

http://www.tartarus.org/%7Emartin/PorterStemmer/
  Here is one you can try online:

http://www.utilitymill.com/utility/
Porter_Stemming_Algorithm

  Cascade of substitutions given specific conditions
GENERALIZATIONS
GENERALIZATION
GENERALIZE
GENERAL

