Regular Expressions and Finite
State Automata

Finite-state automata

* Finite-state automata (FSA)
* Regular languages

» Regular expressions
regular
expressions

finite regular
automata languages

Finite-state Automata (Machines)

~

)

I;aa!'
aaa.
¢ @? pasaat

J
\ b

/baa+!/

a

transition

S

final
state

Input Tape

Yo

b

*

Input Tape

q, 92 q; qs

E

Finite-state Automata

e Q:a finite set of N states

° Q={40, 9/, 92 93 94}

 2:a finite input alphabet of symbols
- 2={a,b,!}

° q,: the start state

* F: the set of final states
° F={q4}
* 0(q,i): transition function
> Given state q and input symbol i, return new state q'

> 3(q3,!) 2 g4

State-transition table

Input
State b a !
0 1 b b
1 ¢ 2 $
2 ¢ 3 $
3 b 3 4
4: ¢ ¢ ¢

a
b a aii!

D-RECOGNIZE

function D-RECOGNIZE (tape, machine) returns accept or reject
index € Beginning of tape
current-state < Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then
return accept
else
return reject
elsif transition-table [current-state, tape[index]] is empty then
return reject
else
current-state < transition-table [current-state, tape[index]]
index € index + |
end

Adding a failing state

Adding an “all else” arc

e
ONONO

Recognize or generate

b a a!
~() W O ‘ ©

Languages and Automata

e Deterministic vs. Non-deterministic FSAs

b a a ' !
a
b a ' a !

X Ep5|lon (€) transmons

Using NFSAs to accept strings

° : add markers at choice points,
then possibly revisit unexplored arcs at
marked choice point.

. :look ahead in input

. :look at alternatives in parallel

Using NFSAs

Input

6666

66 < o

b

State

More about NFSAs

* Equivalence of DFSAs and NFSAs
> For every NFSA, there is an equivalent DFSA.

* Recognition is a search

Recognition using NFSAs

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda < {(Initial state of machine, beginning of tape)}
current-search-state <+~ NEXT(agenda)
loop
if ACCEPT-STATE?(current-search-state) returns true then
return accept
else
agenda +— agenda U GENERATE-NEW-STATES(current-search-state)
if agenda 1s empty then
return reject
else
current-search-state +— NEXT(agenda)
end

Recognition using NFSAs

function GENERATE-NEW-STATES(current-state) returns a set of search-
states

current-node < the node the current search-state 1s in
index < the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
(transition-table[current-node,&], index)
U
(transition-table[current-node, tape[index]], index + 1)

Recognition using NFSAs

function ACCEPT-STATE ?(search-state) returns true or false

current-node < the node search-state 1s in
index < the point on the tape search-state 1s looking at
if index 1s at the end of the tape and current-node 1s an accept state of machine
then
return true
else
return false

NFSA Recognition of “baaa!”

T T 13 flpelal-rT 113 6

qO
1 S[vlalalal] [T3
r:%}@ |
&
2 SO LLELELT T3
OH® |
I
3 SThlalalal T [13
(\/LT_;:;QJ
i
I
4 $Tv]a
O, /
5 e
SThl[a]la

ST T 13 $1bvlalalalll [13 7

STl [T 13 8

Regular language

» @ is a regular language
» Va€ 2 U g,{a}is aregular language

o If LI and L2 are regular languages, then so are:

o LI-L2={xy|x € LI,y € L2},
the concatenation of LI and L2

o LI U L2, the union or disjunction of LI and L2

o LI*, the Kleene closure of LI

Regular languages

* Regular languages are characterized by FSAs

» Regular languages are closed under
concatenation, Kleene closure, union.

Concatenation

Kleene Closure

Finite state transducers

* An automaton that maps between two sets of symbols

* A two-tape automaton that recognizes or generates
of strings

e Think of an FST as an FSA with two symbol strings on
each arc

> One symbol string from each tape

Four-Fold View of FSTs

* As a recognizer
* As a generator
* As a translator
* As a set relater

Digression: Composition (for FSTs)

ac

amb b:c

Figure 3.9 The compositionof T_ab with T bc toproduce T ac -

In assignment |: You will work with FST composition

Similar to concatenation of FSA’s, but two internal conversions compiled
into more efficient single transition a:c

FST’s have input/output pair on arcs instead of a single read-only input

Compose: Performs transitive closure to get single arc with input
symbol of first automaton and output symbol of last automaton

Composition Example

soundexutils compose
output = compose(S. f1, £2, £3)

The above function call computes £1 o £2 o £3. Obviously, it will raise
an error if one or more of the input transducers produce no output.

Figure 3.9 The compositionof T_ab -with T bc toproduce T ac -

from soundexutils import compose
output = compose(’a’, T ab, T bc)

=’ c’

Morphology

Definitions and Problems
What is Morphology!?
Topology of Morphologies

Approaches to Computational Morphology
Lexicons and Rules

Computational Morphology Approaches

Morphology

Study of the way words are built up from
smaller meaning bearing units of language

Smallest meaning bearing units are called

fox has morpheme fox
cats has two morphemes cat and —s
Two classes of morphemes:

Stems: supplies the main meaning
Affixes: add additional meaning

Concatenative morphology

Morpheme+Morpheme+Morpheme+...

Stems: also called lemma, base form, root, lexeme

> hope+ing = hoping hop =2 hopping

Affixes

° Prefixes: Antidisestablishmentarianism

o Suffixes: Antidisestablishmentarianism

Agglutinative Languages

> uygarlastiramadiklarimizdanmissinizcasina

° uygartlag+tir+tamat+dik+lar+imiz+dan+mis+sinizt+casina

° Behaving as if you are among those whom we could not cause
to become civilized

Non-concatenative morphology

* Affixes continued:
° Infixes: hingi (borrow) — humingi (borrower) in Tagalog
o Circumfixes: sagen (say) — gesagt (said) in German

Topology of morphologies

o Concatenative vs. hon-concatenative
(infix, circumfix, templatic)

e Derivational vs. inflectional

* Regular vs. irregular

Templatic Morphology

e Roots and Patterns

s - 4.’.' KTB J DD
1/ L)
2152214 Jikd:
o5Sa M2
maktuub ey

written written

Templatic Morphology:
Root Meaning

o KTB: writing “stuff”

212
spelling

Naino
address

Derivational morphology

e Stem + morpheme -> word with part of speech
different from the stem

* Nominalization: computerization, appointee, killer,
fuzziness

* Formation of adjectives: computational, clueless,
embraceable

o CatVar: Categorial Variation Database

Inflectional morphology

* Stem + morpheme -> word with same
part of speech as the stem

* Adds: tense, number; person, mood, aspect
* Five verb forms in English

» Other languages have (lots more)

Nouns and verbs (in English)

* Nouns have simple inflectional morphology
> cat
° catts, catt’s

* Verbs have more complex morphology

Regulars and lrregulars

* Nouns

> Cat/Cats

> Mouse/Mice, Ox, Oxen, Goose, Geese
* Verbs

> Walk/Walked

> Go/Went, Fly/Flew

Regular (English) Verbs

Morphological Form Classes

Regularly Inflected Verbs

Stem walk merge try map

-s form walks merges | tries maps
-ing form walking | merging | trying | mapping
Past form or —ed participle walked | merged | tried mapped

Irregular (English) Verbs

Morphological Form Classes Irregularly Inflected Verbs
Stem eat catch cut

-s form eats catches cuts
-ing form eating catching cutting
Past form ate caught cut
-ed participle eaten caught cut

“To love” in Spanish

Present |Imper|Imperfect [Future | Preterite| Present |Conditional| Imperfect [Future

Indicative Indicative Subjnct. Subjnct. |Subjnct.

amo amaba amare ame ame amaria amara amare

amas ama |amabas |amaras |amaste |ames |amarias amaras |amares
ames

ama amaba amara amo ame amaria amara amareme

amamos amabamos| amaremos|amamos| amemos amariamos |amaramos amaremos

amais amad [amabais |amaréis |amasteisjameéls |amariais |amarais |amareis
amais

aman amaban |amaran |amaron |amen |amarian amaran |amaren

Morphological parsing

Recognizing that a word (like foxes) breaks down into
component morphemes (fox and -es) and building a
structured representation.

Examples: morphological parsing

cats cat +N +PL
cat cat +N +5G
cities city +N +PL
geese goose +N +PL

ducks (duck +N +PL) or (duck +V +35G)
merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or

(catch +V +PAST)

Building a morphological parser

* Approaches
— © lexicon only
° lexicon and rules
finite-state automata
finite-state transducers
> rules only

Lexicon-only Morphology

* The lexicon lists all surface level and lexical level pairs

* Analysis/generation easy
*Very large for English

* What about Arabic or
Turkish?

acclaim
acclaim
acclaimed
acclaimed
acclaiming
acclaims
acclaims
acclamation
acclamations
acclimate
acclimated
acclimated
acclimates
acclimating

acclaim
acclaim
acclaim
acclaim
acclaim
acclaim
acclaim

SNS
SV+0$S
SV+eds
SV+en$
SV+ing$
SN+s$
SV+sS

acclamation SNS
acclamation SN+s$

acclimate SV+0$
acclimate SV+eds
acclimate SV+en$S
acclimate SV+s$S
acclimate SV+ing$

Building a Morphological Parser

» Approaches
> Lexicon only
— © Lexicon and rules
Finite-state automata
Finite-state transducers
> Rules only

Lexicon and Rules:
FSA Inflectional Noun Morphology

* English noun lexicon

reg-noun Irreg-pl-noun Irreg-sg-noun plural
fox geese g00se -S

cat sheep sheep

dog mice mouse

reg—noun plural (—s)

* English noun
rule

irreg—pl—-noun

irreg—sg—noun

Lexicon and Rules: FSA English Verb
Inflectional Morphology

reg-verb-stem | irreg-verb-stem | irreg-past-verb | past past-part | pres-part | 3sg
walk cut caught -ed -ed -ing -S
fry speak ate
talk spoken eaten
impeach sing

sang

irreg—verb—stem

irreg—past—verb—form

reg—verb—stem

preterite (—ed)

prog (—ing)

3—sing (—s)

FSA for Derivational Morphology:
Ad]ectival Formation

—el —est
adj—root

adj-root,

—er —ly

adj—root,

More Complex
Derivational Morphology

noun; —ize/V —ation/N

Using FSAs for Recognition: English
Nouns and their Inflection

Morphological Parsing

» Finite-state automata (FSA)
Recognizer

* Finite-state transducers (FST)
input-output pair

Lexical é C ‘ alt [+N +P|_|

LS'zuﬁzcei C ‘ alt|s ‘

Terminology

* Characters correspond to pairs, written a:b

 [f“a:a”, write “a” for shorthand

e # = word boundary

e A = morpheme boundary

e Other ="any feasible pair that is not in this transducer”

Lexical é

Surface %

Nominal Inflection FST

Lexical and Intermediate Tapes

Lexical i | f

+PL|

Intermediate % | f

s |#

Spel

ling Rules

Name Rule Description Example
Consonant 1-letter consonant doubled before -ing/-ed | beg/begging
Doubling

E-deletion Silent e dropped before -ing and -ed make/making
E-insertion e added after s,z,x,ch,sh before s watch/watches
Y-replacement -y changes to -ie before -s, -1 before -ed try/tries
K-insertion verbs ending with vowel + -c add -k panic/panicked

lnfc?/'mc-?c'/iaz‘eé f o|l x| ™ |s #

Lexical é f O| X | +N |+PL

3

3

Surfa c."c-_’é f lo|x]|e|s

Two-Level Morphology

Lexical é f O| X | +N |+PL

1
[I'If(-?l'lllé?di(lf(-?i f ol x| 2 |s
A

r-_'l__-l -cI)rthographi::1;;[_--;::1_--|
TFST.{ “"vue [FST.
S S I oI

Surfa ("(—?% f lo[x|e|s

Chomsky and Halle Notation

e Rules to move from intermediate level to
surface level

ca—b/c d
e Rewrite a2 as b when it occurs between
and

Chomsky and Halle Notation

7]
>

E —el < | N s#H

Intermediate-to-Surface Transducer

#, other

State Transition Table

State\ Input S:8 X:X Z:7Z € £:e # other
qo: I l l 0 - 0 0
q: I l I 2 - 0 0
¢ 5 l I 0 3 0 0
([_: 4 - - - - - -
(4 - - - - - 0 -
{5 l l l 2 - - 0

How would we represent this in NLTK?
from nltk_contrib.fst import fst

f = fst.FST('pluralize’)

f.add_state('q0")

f.initial _state = 'q0'

f.set final('q0")

f.add_state('ql’)

f.add_arc('q0','ql’, 'z, '2)

Two-Level Morphology

Lexical é f O| X | +N |+PL

1
[I'If(-?l'lllé?di(lf(-?i f ol x| 2 |s
A

r-_'l__-l -cI)rthographi::1;;[_--;::1_--|
TFST.{ “"vue [FST.
S S I oI

Surfa ("(—?% f lo[x|e|s

Nominal Inflection FST

Intermediate-to-Surface Transducer

e-insert

Sample Run

Lexical % f O| X | +N |+PL

T

lex

Intermediate é

Te—insert

Surfa ('(—?i f lol x|e |s

FSTs and ambiguity

* Parse Example |: unionizable
° union +ize +able
° un+ ion +ize +able
* Parse Example 2:assess
° assessV
> assN +essN
* Parse Example 3: tender
° tenderA|]
> tenNum+dAJ+erCMP

What to do about Global
Ambiguity?

* Accept first successful structure

* Run parser through all possible paths

e Bias the search in some manner

Building a morphological parser

* Approaches
> lexicon only
° lexicon and rules
finite-state automata
finite-state transducers
— © rules only

Lexicon-Free Morphology:

Porter Stemmer

* Lexicon-Free FST Approach
e By Martin Porter (1980)

* Here is one you can try online:

» Cascade of substitutions given specific conditions
GENERALIZATIONS
GENERALIZATION
GENERALIZE
GENERAL

