

  Finite-state automata (FSA)
 Regular languages
 Regular expressions

/baa+!/

q0 q1 q2 q3 q4

b a a !

a

state transition final
state

 baa!
 baaa!
 baaaa!
 baaaaa!
 ...

a b a ! b

q0

0 1 2 3 4

b a a !
a

REJECT

b a a a

q0 q1 q2 q3 q3 q4

!

0 1 2 3 4

b a a !
a

ACCEPT

  Q: a finite set of N states
◦  Q = {q0, q1, q2, q3, q4}

  Σ: a finite input alphabet of symbols
◦  Σ = {a, b, !}

  q0: the start state
  F: the set of final states
◦  F = {q4}

  δ(q,i): transition function
◦  Given state q and input symbol i, return new state q'
◦  δ(q3,!) q4

Input
State b a !

0 1 ϕ ϕ
1 ϕ 2 ϕ
2 ϕ 3 ϕ
3 ϕ 3 4
4: ϕ ϕ ϕ

function D-RECOGNIZE (tape, machine) returns accept or reject
 index Beginning of tape
 current-state Initial state of machine
 loop
 if End of input has been reached then
 if current-state is an accept state then
 return accept
 else
 return reject
 elsif transition-table [current-state, tape[index]] is empty then
 return reject
 else
 current-state transition-table [current-state, tape[index]]
 index index + 1
end

q0 q1 q2 q3 q4

b a a !

a

qF a

!

b

! b ! b
b

a

!

q0 q1 q2 q3 q4

b a a !

a

qF

=
= =

=

 Deterministic vs. Non-deterministic FSAs

 Epsilon (ε) transitions

 Backup: add markers at choice points,
then possibly revisit unexplored arcs at
marked choice point.

 Look-ahead: look ahead in input
 Parallelism: look at alternatives in parallel

Input
State b a ! ε

0 1 ϕ ϕ ϕ
1 ϕ 2 ϕ ϕ
2 ϕ 2,3 ϕ ϕ
3 ϕ ϕ 4 ϕ
4 ϕ ϕ ϕ ϕ

  Equivalence of DFSAs and NFSAs
◦  For every NFSA, there is an equivalent DFSA.

  Recognition is a search

  ϕ is a regular language

  ∀a ∈ Σ ∪ ε, {a} is a regular language

  If L1 and L2 are regular languages, then so are:
◦  L1· L2 = {xy | x ∈ L1 , y ∈ L2 },

the concatenation of L1 and L2
◦  L1 ∪ L2, the union or disjunction of L1 and L2
◦  L1∗, the Kleene closure of L1

  Regular languages are characterized by FSAs

  Regular languages are closed under
concatenation, Kleene closure, union.

  An automaton that maps between two sets of symbols
  A two-tape automaton that recognizes or generates

pairs of strings
  Think of an FST as an FSA with two symbol strings on

each arc
◦  One symbol string from each tape

 As a recognizer
 As a generator
 As a translator
 As a set relater

In assignment 1: You will work with FST composition
Similar to concatenation of FSA’s, but two internal conversions compiled

into more efficient single transition a:c
FST’s have input/output pair on arcs instead of a single read-only input
Compose: Performs transitive closure to get single arc with input

symbol of first automaton and output symbol of last automaton

T_ab T_bc T_ac

from soundexutils import compose
output = compose(’a’, T_ab, T_bc)
 ’c’

T_ab T_bc T_ac

  Definitions and Problems
◦ What is Morphology?
◦ Topology of Morphologies

  Approaches to Computational Morphology
◦  Lexicons and Rules
◦ Computational Morphology Approaches

  Study of the way words are built up from
smaller meaning bearing units of language

  Smallest meaning bearing units are called
morphemes

fox has morpheme fox
cats has two morphemes cat and –s

  Two classes of morphemes:
◦  Stems: supplies the main meaning
◦  Affixes: add additional meaning

  Morpheme+Morpheme+Morpheme+…
  Stems: also called lemma, base form, root, lexeme
◦  hope+ing hoping hop hopping

  Affixes
◦  Prefixes: Antidisestablishmentarianism
◦  Suffixes: Antidisestablishmentarianism

  Agglutinative Languages
◦  uygarlaştıramadıklarımızdanmışsınızcasına
◦  uygar+laş+tır+ama+dık+lar+ımız+dan+mış+sınız+casına
◦  Behaving as if you are among those whom we could not cause

to become civilized

 Affixes continued:
◦  Infixes: hingi (borrow) – humingi (borrower) in Tagalog
◦  Circumfixes: sagen (say) – gesagt (said) in German

 Concatenative vs. non-concatenative
(infix, circumfix, templatic)

 Derivational vs. inflectional

 Regular vs. irregular

 Roots and Patterns

 بوكتم

 K T B ب

 ? ? مَ و ?

 ت ك

וכת
 ב

 ב

 ? ? ו ?

 ת כ

maktuub
written

ktuuv
written

 KTB: writing “stuff”

 כתב

 מכתב

 כתב

 כתיב
spelling

 כתובת
address

 كتب

 كاتب

 مكتوب

 كتاب
book

 مكتبة
library

 مكتب
office

write

writer

letter

  Stem + morpheme -> word with part of speech
different from the stem

  Nominalization: computerization, appointee, killer,
fuzziness

  Formation of adjectives: computational, clueless,
embraceable

  CatVar: Categorial Variation Database
http://clipdemos.umiacs.umd.edu/catvar/

  Stem + morpheme -> word with same
part of speech as the stem

 Adds: tense, number, person, mood, aspect
  Five verb forms in English
 Other languages have (lots more)

  Nouns have simple inflectional morphology
◦  cat
◦  cat+s, cat+’s

  Verbs have more complex morphology

  Nouns
◦ Cat/Cats
◦ Mouse/Mice, Ox, Oxen, Goose, Geese

  Verbs
◦ Walk/Walked
◦ Go/Went, Fly/Flew

Morphological Form Classes Regularly Inflected Verbs

Stem walk merge try map

-s form walks merges tries maps

-ing form walking merging trying mapping
Past form or –ed participle walked merged tried mapped

Morphological Form Classes Irregularly Inflected Verbs

Stem eat catch cut

-s form eats catches cuts

-ing form eating catching cutting

Past form ate caught cut

-ed participle eaten caught cut

Recognizing that a word (like foxes) breaks down into
component morphemes (fox and -es) and building a
structured representation.

WORD STEM (+FEATURES)*
cats cat +N +PL
cat cat +N +SG
cities city +N +PL
geese goose +N +PL
ducks (duck +N +PL) or (duck +V +3SG)
merging merge +V +PRES-PART
caught (catch +V +PAST-PART) or
 (catch +V +PAST)

  Approaches
◦  lexicon only
◦  lexicon and rules
  finite-state automata
  finite-state transducers
◦  rules only

acclaim acclaim N
acclaim acclaim $V+0$
acclaimed acclaim $V+ed$
acclaimed acclaim $V+en$
acclaiming acclaim $V+ing$
acclaims acclaim $N+s$
acclaims acclaim $V+s$
acclamation acclamation N
acclamations acclamation $N+s$
acclimate acclimate $V+0$
acclimated acclimate $V+ed$
acclimated acclimate $V+en$
acclimates acclimate $V+s$
acclimating acclimate $V+ing$

•  The lexicon lists all surface level and lexical level pairs

•  Analysis/generation easy

•  Very large for English

•  What about Arabic or
 Turkish?

  Approaches
◦  Lexicon only
◦  Lexicon and rules
  Finite-state automata
  Finite-state transducers
◦ Rules only

reg-noun Irreg-pl-noun Irreg-sg-noun plural

fox
cat
dog

geese
sheep
mice

goose
sheep
mouse

-s

•  English noun lexicon

•  English noun
 rule

reg-verb-stem irreg-verb-stem irreg-past-verb past past-part pres-part 3sg
walk
fry
talk
impeach

cut
speak
spoken
sing
sang

caught
ate
eaten

-ed -ed -ing -s

  Finite-state automata (FSA)
◦  Recognizer

  Finite-state transducers (FST)
◦  input-output pair

  Characters correspond to pairs, written a:b
  If “a:a”, write “a” for shorthand
  # = word boundary
  ^ = morpheme boundary
  Other = “any feasible pair that is not in this transducer”

Name Rule Description Example
Consonant
Doubling

1-letter consonant doubled before -ing/-ed beg/begging

E-deletion Silent e dropped before -ing and -ed make/making

E-insertion e added after s,z,x,ch,sh before s watch/watches

Y-replacement -y changes to -ie before -s, -i before -ed try/tries

K-insertion verbs ending with vowel + -c add -k panic/panicked

 Rules to move from intermediate level to
surface level

  a → b / c__d
 Rewrite a as b when it occurs between

c and d

ε → e /

x
s
z

^ __ s #

How would we represent this in NLTK?
from nltk_contrib.fst import fst
f = fst.FST('pluralize')
f.add_state('q0')
f.initial_state = 'q0'
f.set_final('q0')
f.add_state('q1')
f.add_arc('q0', 'q1', 'z', 'z')

Tlex

Te-insert

  Parse Example 1: unionizable
◦  union +ize +able
◦  un+ ion +ize +able

  Parse Example 2: assess
◦  assessV
◦  assN +essN

  Parse Example 3: tender
◦  tenderAJ
◦  tenNum+dAJ+erCMP

 Accept first successful structure

 Run parser through all possible paths

 Bias the search in some manner

  Approaches
◦  lexicon only
◦  lexicon and rules
  finite-state automata
  finite-state transducers
◦  rules only

  Lexicon-Free FST Approach
  By Martin Porter (1980)

http://www.tartarus.org/%7Emartin/PorterStemmer/
  Here is one you can try online:

http://www.utilitymill.com/utility/
Porter_Stemming_Algorithm

  Cascade of substitutions given specific conditions
GENERALIZATIONS
GENERALIZATION
GENERALIZE
GENERAL

