Cross-lingual Distributional Profiles of Concepts for Measuring Semantic Distance

Saif Mohammad, Iryna Gurevych, Graeme Hirst, and Torsten Zesch

University of Toronto & Darmstadt University of Technology

Semantic distance

CLOWN

BRIDGE

A measure of how close or distant two units of language are in terms of their meaning

Knowledge source–based semantic measures

- Structure of a network or resource
 - The nodes represent senses or concepts
 - Examples: Resnik (1995), Jiang and Conrath (1997)
- Drawbacks
 - Resource bottleneck
 - Not easily domain-adaptable
 - Accuracy on pairs other than noun–noun is poor
 - Relatedness estimation is poor

Corpus-based distributional measures

- Words in similar contexts are close.
 - Distributional profile (DP) of a word: strength of association of the word with co-occurring words in text

Example DPs of words

DP of star

star: *space* 0.21, *movie* 0.16, *famous* 0.15, *light* 0.12, *constellation* 0.11, *heat* 0.08, *rich* 0.07, *hydrogen* 0.07, ...

DP of *fusion*

fusion: *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Example DPs of words

DP of star

star: *space* 0.21, *movie* 0.16, *famous* 0.15, *light* 0.12, *constellation* 0.11, *heat* 0.08, *rich* 0.07, *hydrogen* 0.07, ...

DP of *fusion*

fusion: *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Corpus-based distributional measures

- Words in similar contexts are close.
 - Distributional profile (DP) of a word: strength of association of the word with co-occurring words (text)
 - Distributional measure: distance between DPs
 Cosine, Lin, α-skew divergence
- Drawbacks
 - Poor accuracy (albeit higher coverage)
 - Conflation of word senses

Problem with distributional word-distance measures

DP of star

star: *space* 0.21, *movie* 0.16, *famous* 0.15, *light* 0.12, *constellation* 0.11, *heat* 0.08, *rich* 0.07, *hydrogen* 0.07, ...

DP of *fusion*

fusion: *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Problem with distributional word-distance measures

DP of star

star: *space* 0.21, *movie* 0.16, *famous* 0.15, *light* 0.12, *constellation* 0.11, *heat* 0.08, *rich* 0.07, *hydrogen* 0.07, ...

DP of *fusion*

fusion: *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Word sense ambiguity reduces accuracy of distance measures

Shared limitations

• Precomputing all distances is computationally expensive

WordNet-based measures:

 $117,000 \times 117,000$ sense–sense distance matrix

Distributional measures:

 $100,000 \times 100,000$ word–word distance matrix

• Monolingual

Our hybrid approach (Mohammad and Hirst, EMNLP-2006)

- Combines a knowledge source with text
- Profiles concepts (rather than words)
- Uses thesaurus categories as concepts/coarse-grained senses
 - Most published thesauri: around 1000 categories
 - Concept–concept distance matrix: only 1000 × 1000
- Capable of giving both similarity and relatedness values

Distributional profiles of concepts

DPs of the concepts referred to by *star*:

DP of 'celestial body'

'celestial body' (*celestial body, sun, ...*): *space* 0.36, *light* 0.27, *constellation* 0.11, *hydrogen* 0.07, ...

DP of 'celebrity'

'celebrity' (*celebrity, hero, ...*): *famous* 0.24, *movie* 0.14, *rich* 0.14, *fan* 0.10, ...

Distance: star and fusion

First, consider the 'celebrity' sense of *star*:

DP of 'celebrity'

'celebrity'star: famous 0.24, movie 0.14, rich 0.14, fan 0.10, ...

DP of 'fusion'

'fusion': *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Distributionally NOT close

Distance: star and fusion

Then, consider the 'celestial body' sense of *star*:

DP of 'celestial body'

'celestial body': *space* 0.21, *light* 0.12, *constellation* 0.11, *heat* 0.08, *hydrogen* 0.07, ...

DP of 'fusion'

'fusion': *heat* 0.16, *hydrogen* 0.16, *energy* 0.13, *bomb* 0.09, *light* 0.09, *space* 0.04, ...

Distributionally close Word sense ambiguity NOT a problem

Our previous results (Mohammad and Hirst, EMNLP-2006)

- Concept-distance better than word-distance
- Combining text and a knowledge source gives higher accuracies

But...

Application of distance algorithms in most languages is hindered by a lack of high-quality linguistic resources.

So: Make it cross-lingual

- A new way of determining distance in a resource-poor language
 - By combining its text with a thesaurus from a (possibly resource-rich) language
 - Largely eliminates the knowledge-source bottleneck
 - Using a bilingual lexicon and a bootstrapping algorithm
- Without relying on parallel corpora or sense-annotated data
- Experiments: German as a "resource-poor" language

Stern

Bank

 $\} w^{de}$

German words w^{de}

German words w^{de}

English translations w^{en} (German–English lexicon)

Cross-lingual links

German words w^{de}

English translations w^{en} (German–English lexicon) English concepts c^{en} (English thesaurus)

Dealing with ambiguity

The concepts of 'celebrity' and 'judiciary' are semantically unrelated to *Stern* and *Bank*, respectively.

Cross-lingual candidate senses of German words *Stern* and *Bank*

Cross-lingual DPCs

Cross-lingual DPs of the concepts referred to by *star*:

Cross-lingual DP of 'celebrity' **'celebrity'** (*celebrity, hero,* ...): *berühmt* 0.24, *Film* 0.14, *reich* 0.14, ...

Creating cross-lingual DPCs

Cross-lingual word-category co-occurrence matrix (WCCM)

	c_1^{en}	c_2^{en}	• • •	c_j^{en}	•••
w_1^{de}	m_{11}	<i>m</i> ₁₂	• • •	m_{1j}	• • •
w_2^{de}	m_{21}	<i>m</i> ₂₂	• • •	m_{2j}	• • •
• •	• •	• •	•	•	• •
w _i ^{de}	m_{i1}	m_{i2}	• • •	m _{ij}	• • •
• •	• •	• •	• • •	• •	•

- WCCM: German words vs. English categories
- Cell m_{ij}: number of times word w_i co-occurs with a word having c_j as one of its cross-lingual candidate senses

- Cell (*Raum*, CELESTIAL BODY) incremented
- Cell (*Raum*, CELEBRITY) incremented

X: Stern, Sonne, Himmelskörper, Morgensonne, Konstellation

Cross-lingual matrix

				CELESTIAL	
	c_1^{en}	c_2^{en}	• • •	BODY	• • •
w_1^{de}	<i>m</i> ₁₁	<i>m</i> ₁₂	• • •	m_{1j}	• • •
w_2^{de}	<i>m</i> ₂₁	<i>m</i> ₂₂	•••	m_{2j}	• • •
• • •	•	• •	••••	• • •	• •
Raum	m_{i1}	m_{i2}	• • •	m_{ij}	• • •
• •	•	•	• • •	• •	•

- Cell (*Raum*, CELESTIAL BODY) incremented
- New, more accurate, **bootstrapped WCCM**
 - Word sense dominance

(Mohammad and Hirst, EACL-2006)

Cross-lingual DPCs

Cross-lingual DPs of the concepts referred to by *star*:

Cross-lingual DP of 'celebrity' **'celebrity'** (*celebrity, hero,* ...): *berühmt* 0.24, *Film* 0.14, *reich* 0.14, ...

Measures we used

Cross-lingual and hybrid

- Distributional measures
 - α-skew divergence
 - Cosine
 - Jensen-Shannon divergence
 - Lin's distributional measure

Comparison measures

Monolingual and GermaNet-based

- Lesk-like measures (Gurevych, 2005):
 - Hypernym pseudo-gloss
 - Radial pseudo-gloss
- Information content measures (Budanitsky and Hirst, 2006):
 - Jiang and Conrath's WordNet measure
 - Lin's WordNet measure
 - Resnik's WordNet measure

Evaluation

1. Rank closeness of word pairs

Dataset	# pairs	PoS	Relations	Scores	# subjects	Correlation
Gur65	65	Ν	classical	{0,1,2,3,4}	24	.810
Gur350	350	N, V, A	both	{0,1,2,3,4}	8	.690

- Automatic measures rank word pairs
 - From near-synonyms to unrelated
- Correlation with human ranking
 - Spearman's rank order correlation (ρ)
 - Pearson's correlation coefficient (r)

Evaluation

Correlation with ranked word pairs

Evaluation 2. Solve word choice problems

1008 Reader's Digest questions:

Duplikat (duplicate)

- a. *Einzelstück* (single copy) b. *Doppelkinn* (double chin)
- c. *Nachbildung* (replica) d. *Zweitschrift* (copy)

Evaluation

Solving word-choice problems

Unsupervised Naïve Bayes word sense classifier

- Estimated probabilities from the cross-lingual DPCs
- Took part in SemEval-07's:
 - Multilingual Chinese–English Lexical Sample Task
 - Placed clear first among unsupervised systems

Summary

- Algorithm to determine semantic distance in resourcepoor languages
 - Combine its text with a thesaurus in another language
 - Bilingual lexicon and a bootstrapping algorithm
 - NO sense-annotated data or parallel corpora
- Evaluated on word pair ranking and word choice problems
 - Compared with best monolingual approaches

Conclusions

- State-of-the-art accuracies can be achieved even for languages poor in linguistic resources.
 - Improvement even over established resources
 - Superior coverage (despite the bilingual lexicon step)
- Cross-lingual DPCs allow for a seamless and largely loss-free transition from words in one language to a concepts in another.
 - Machine translation, multi-lingual document clustering, multilingual information retrieval,...

Future work

- Using Wikipedia instead of a published thesaurus
- Adding cross-lingual semantic distance as a feature to an MT system
- Determining cognates using semantic distance between words in different languages
- Cross-lingual document clustering
- Cross-lingual information retrieval
- Cross-lingual document summarization

Capturing DPCs

- Method
 - Direct: sense-annotated data
 - Alternative: Mohammad and Hirst (EACL-2006)
 - Combining raw text and a knowledge source
- Sense inventory
 - Published thesaurus

Published Thesauri

- E.g., *Roget's* (English), *Macquarie* (English), *Cilin* (Chinese), *Bunrui Goi Hyou* (Japanese)
- Vocabulary divided into about 1000 categories
 - Words in a category are closely related.
 - A category can be thought of as a very coarse-grained concept (Yarowsky, 1992).
 - Represents senses of the words in it
- One word, more than one category
 - *bark* in ANIMAL NOISES and MEMBRANE.

Precomputing Distances

Distributional word–word distance matrix $\approx 100,000 \times 100,000$ WordNet-based concept-concept distance matrix $\approx 75,000 \times 75,000$

	<i>w</i> ₁	• • •	W_j	• • •		<i>c</i> ₁	• • •	Cj	• • •
w_1	<i>m</i> ₁₁	• • •	m_{1j}	• • •	<i>c</i> ₁	m_{11}	•••	m_{1j}	•••
• •	• •	•	• •	• • •	• •	• •	•	• •	• • •
Wi	m_{i1}	• • •	m _{ij}	• • •	Ci	m_{i1}	• • •	m _{ij}	• • •
• •	•	• •	• • •	•	• •	• •	• •	• •	•

Why a Thesaurus?

- Computational ease: concept–concept distance matrix is much smaller (roughly .01%).
- Coarse senses: WordNet is much too fine grained.
- Availability: Thesauri are available in many languages.
- Words for a sense: Each sense can be represented unambiguously with a set of (possibly ambiguous) words.

distance(star, film) = min (distance(CELEBRITY, MOTION PICTURE), distance(CELEBRITY, THIN MEMBRANE), distance(CELESTIAL BODY, MOTION PICTURE), distance(CELESTIAL BODY, THIN MEMBRANE))