Distributional Measures of Concept-Distance

A Task-oriented Evaluation

Saif Mohammad and Graeme Hirst Department of Computer Science University of Toronto

EMNLP, Sydney, Australia (22–23 July 2006)

Copyright © 2006, Saif Mohammad and Graeme Hirst

Distributional Measures of Concept-Distance. Saif Mohammad and Graeme Hirst. 1

Concept-Distance

Uses: machine translation, information retrieval, word sense disambiguation, correcting real-word spelling errors, ...

Words that co-occur strongly with salsa and dance

Word-Distance

Words that co-occur strongly with salsa and dance

Semantic Measures of Concept-Distance

- Structure of a network or resource
 - The nodes represent senses or concepts
- Examples
 - MeSH: Rada et al. (1989)
 - WordNet: Resnik (1995), Jiang and Conrath (1997), Leacock and Chodrow (1998)

Distributional Measures of Word-Distance

- Rely only on raw text
- Consider words with similar contexts close
 - Create distributional profiles (DPs)
 - Strength of association with co-occurring words
 salsa: dance (.28), fun (.2), spicy (.18), shine

 (.1), chips (.07), ...
 - Measure distance between DPs

Example Measures

Strength of association

conditional probability (cp) pointwise mutual information (pmi)

DP distance

 α -skew divergence (ASD)

cosine (cos)

Jensen–Shannon divergence (JSD)

Lin (Lin)

Typical combinations:

- ASD and cp
- cos and *cp*

- JSD and cp
- *Lin* and *pmi*

The Distributional Hypothesis

Words in similar contexts tend to be semantically related.

• Distributional measure as proxy for a semantic measure

The Distributional Hypothesis

Words in similar contexts tend to be semantically similar.

- Distributional measure as proxy for a semantic measure
- Word sense ambiguity reduces accuracy

Focus: DP of Concepts

- Different senses of a word
 - Different "company" or distributional profiles (DPs)
 SALSA (the dance): dance (.34), fun (.27), grace (.18), partner (.11), ...
 SALSA (the dip): chips (.38), tortilla (.31), tomato (.23), hot (.17), ...
- Use of distributional profile of concepts (DPCs)
 Intuitive and useful

Capturing DPCs

- Method
 - Direct: sense-annotated data
 - Alternative: Mohammad and Hirst (EACL-2006)
 - Combining raw text and a knowledge source
- Sense inventory
 - Published thesaurus

Published Thesauri

- E.g., *Roget's* (English), *Macquarie* (English), *Cilin* (Chinese), *Bunrui Goi Hyou* (Japanese)
- Vocabulary divided into about 1000 categories
 - Words in a category are closely related.
 - A category can be thought of as a very coarse-grained concept (Yarowsky, 1992).
 - Represents senses of the words in it
- One word, more than one category
 - *bark* in ANIMAL NOISES and MEMBRANE.

Precomputing Distances

Distributional word–word distance matrix $\approx 100,000 \times 100,000$ WordNet-based concept-concept distance matrix $\approx 75,000 \times 75,000$

	<i>w</i> ₁	• • •	W_j	• • •		<i>c</i> ₁	• • •	Cj	• • •
w_1	<i>m</i> ₁₁	• • •	m_{1j}	• • •	c_1	m_{11}	• • •	m_{1j}	• • •
• •	•	•	• • •	• • •	• •	• •	•	• •	• • •
Wi	m_{i1}	• • •	m _{ij}	• • •	C_i	m_{i1}	• • •	m _{ij}	• • •
• •	•	• •	• •	••••	• •	• •	• •	• •	•

Why a Thesaurus?

- Computational ease: concept–concept distance matrix is much smaller (roughly 1000 x 1000 i.e., 0.01%).
- Coarse senses: WordNet is much too fine grained.
- Availability: Thesauri are available in many languages.
- Words for a sense: Each sense can be represented unambiguously with a set of (possibly ambiguous) words.

Method

Step 1. Creating DPCs

Word–Category Co-occurrence Matrix (WCCM)

	c_1	<i>c</i> ₂	• • •	Cj	•••
w_1	<i>m</i> ₁₁	<i>m</i> ₁₂	• • •	m_{1j}	• • •
<i>W</i> ₂	m_{21}	<i>m</i> ₂₂	•••	m_{2j}	• • •
• •	• •	•	•	•	• • •
Wi	m_{i1}	m_{i2}	• • •	m _{ij}	• • •
• •	• •	• •	• •	• •	•

- WCCM: categories (thesaurus) vs. words (vocabulary)
- Cell m_{ij}: number of times word w_i co-occurs with a word listed in category c_j

- Cell (space, CELESTIAL BODY) incremented by 1
- Cell (space, CELEBRITY) incremented by 1

X: star, nova, constellation, sun

Word–Category Matrix

				CELESTIAL	
	<i>c</i> ₁	<i>C</i> ₂	• • •	BODY	•••
w_1	<i>m</i> ₁₁	<i>m</i> ₁₂	• • •	m_{1j}	• • •
w ₂	<i>m</i> ₂₁	m_{22}	• • •	m_{2j}	• • •
• •	•	• •	•		• • •
space	m_{i1}	m_{i2}	• • •	m_{ij}	• • •
• •	•	• •	• •	• •	•

Contingency Table for *w* and *c*

Applying a statistic gives the strength of association

- Conditional probability
- Pointwise mutual information

Base WCCM

- Matrix created after the first pass of unannotated text
 - Noisy
 - Captures strong associations
- Words that occur close to a target word
 - Good indicators of intended sense

- Cell (space, CELESTIAL BODY) incremented by 1
- New, more accurate, bootstrapped WCCM
 - Word sense dominance (Mohammad and Hirst, EACL-2006)

Method

Step 2. Calculate Concept-Distance

- Two concepts are close if their DPs are close.
 - Strength of association between a concept and cooccurring words: bootstrapped WCCM
- Any distributional measure can now be used to measure concept-distance.

Example: cosine

Before: word-distance

$$Cos_{cp}(w_1, w_2) = \frac{\sum_{w \in C(w_1) \cup C(w_2)} \left(P(w|w_1) \times P(w|w_2) \right)}{\sqrt{\sum_{w \in C(w_1)} P(w|w_1)^2} \times \sqrt{\sum_{w \in C(w_2)} P(w|w_2)^2}}$$

C(x): set of words that co-occur with word x

Now: concept-distance

$$Cos_{cp}(c_1, c_2) = \frac{\sum_{w \in C(c_1) \cup C(c_2)} \left(P(w|c_1) \times P(w|c_2) \right)}{\sqrt{\sum_{w \in C(c_1)} P(w|c_1)^2} \times \sqrt{\sum_{w \in C(c_2)} P(w|c_2)^2}}$$

C(x): set of words that co-occur with concept x

Evaluation

1. Rank Closeness of Word Pairs

- Automatic measures rank word pairs
 - From near-synonyms to unrelated
- Correlation with human ranking
 Rubenstein and Goodenough (1965)

Concept-Distance Approach

distance(star, film) = min (distance(CELEBRITY, MOTION PICTURE), distance(CELEBRITY, THIN MEMBRANE), distance(CELESTIAL BODY, MOTION PICTURE), distance(CELESTIAL BODY, THIN MEMBRANE))

Results

Rank correlation with human judgment

measure	word distance	concept distance
ASD and cp	.45	.60
Cos and cp	.54	.69
JSD and cp	.48	.61
Lin and pmi	.52	.71

- WordNet-based measures: .78 to .84 (Hirst and Budanit-sky, 2005)
- WordNet-based concept-distance > Distributional concept-distance > Distributional word-distance

Evaluation 2. Correct Real-Word Spelling Errors

Method (Hirst and Budanitsky, 2005):

• No semantically close neighbors: suspect

... interest ... money ... band ... loan ... deposit ...

• Suspect has spelling variant semantically close to a word in context: alarm

... interest ... money ... bank ... loan ... deposit ...

• Two words are semantically close: distance measure

Evaluation (continued)

- Data: 500 articles from the *Wall Street Journal*
 - Every 200th word is replaced by a spelling variant.
- Evaluation metric (Hirst and St-Onge, 1998):

correction ratio = probability of an error being corrected probability of a correct word raising the alarm

Results

Correction ratio (distributional measures)			Correction ratio (WordNet measures)		
measure	word distance	concept distance	measure	concept distance	
ASD and cp	5.03	9.49	Hirst–St-Onge	7.7	
Cos and cp	4.06	9.05	Jiang–Conrath	12.9	
JSD and cp	4.88	7.87	Leacock–Chodrow	7.3	
Lin and pmi	6.52	6.87	Lin	8.5	
			Resnik	5.6	

- Distributional concept-distance measures are markedly better than word-distance measures.
- Only Jiang–Conrath of the WordNet measures outperforms the best distributional concept-distance measure.

Discussion Distributional Measures

- Distributional concept-distance measures superior
 - Sense-ambiguity problem of word-distance measures
 - Best measures
 - Ranking word pairs: Lin, Cos
 - Correcting spelling errors: ASD, Cos
- Both concept- and word-distance measures
 - Adapt to changes in language
 - Geared towards specific domains

Discussion

WordNet-based Measures

- Do better in the word-pair-ranking task
 - Small data-set
- Only Jiang-Conrath outperforms the best distributional concept-distance measures in correcting spelling errors
- Rely on the extensive noun hyponymy hierarchy
 Both evaluation tasks are on noun–noun pairs
 - Performance on other pairs expected to be poor

Discussion

Distributional Concept-Distance Measures

- Combine knowledge source and text corpora
- Rely on the flat structure of a thesaurus
 - The use of hierarchy and links between categories is still to be explored.
- Very coarse sense inventory (about a 1000 concepts)
 Pre-computing the complete distance matrix is much easier.

Summary

Provided a framework that allows distributional measures to estimate concept-distance

- Used raw text and a published thesaurus
- Created and used distributional profiles of concepts
- Evaluated in comparison with word-distance measures and WordNet-based measures on two tasks

Current and Future Work

- Use sense inventory of intermediate coarseness
 - Paragraphs of the thesaurus
- Create more accurate WCCMs
 - Weight membership of words in categories
- Explore more applications
 - Compositionality of multi-word expressions
- Extend the ideas to determine senses from text
 - Eliminate reliance on a published thesaurus