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Abstract
Bigrams (two-word sequences) hold a special
place in semantic composition research since
they are the smallest unit formed by
composing words. A semantic relatedness
dataset that includes bigrams will thus be
useful in the development of automatic
methods of semantic composition. However,
existing relatedness datasets only include
pairs of unigrams (single words). Further,
existing datasets were created using rating
scales and thus suffer from limitations such as
inconsistent annotations and scale region bias.
In this paper, we describe how we created a
large, fine-grained, bigram relatedness dataset
(BiRD), using a comparative annotation
technique called Best–Worst Scaling. Each of
BiRD’s 3,345 English term pairs involves at
least one bigram. We show that the
relatedness scores obtained are highly reliable
(split-half reliability r = 0.937). We analyze
the data to obtain insights into bigram
semantic relatedness. Finally, we present
benchmark experiments on using the
relatedness dataset as a testbed to evaluate
simple unsupervised measures of semantic
composition. BiRD is made freely available
to foster further research on how meaning can
be represented and how meaning can be
composed.

1 Introduction

The term semantic relatedness refers to the extent
to which two concepts are close in meaning. The
ability to assess semantic relatedness is central to
the use and understanding of language
(Hutchison, 2003; Mohammad and Hirst, 2005;
Huth et al., 2016). Manual ratings of semantic
relatedness are useful for: (a) obtaining insights
into how humans perceive and use language; and
(b) developing and evaluating automatic natural
language systems.

Existing datasets of semantic relatedness, such
as the one by Finkelstein et al. (2002), only focus
on pairs of unigrams (single words). However,
the concept of semantic relatedness applies more
generally to any unit of text. Work in semantic
representation explores how best to represent the
meanings of words, phrases, and sentences.
Bigrams (two-word sequences) are especially
important there since they are the smallest unit
formed by composing words. Thus it would be
useful to have large semantic relatedness datasets
involving bigrams.

Existing datasets also suffer from shortcomings
due to the annotation schemes employed. Except
in the case of a few small but influential datasets,
such as those by Miller and Charles (1991) and
Rubenstein and Goodenough (1965), annotations
were obtained using rating scales. (Annotators
were asked to give scores for each pair; usually
on a discrete 0 to 5 scale.) Rating scales suffer
from significant known limitations, including:
inconsistencies in annotations by different
annotators, inconsistencies in annotations by the
same annotator, scale region bias (annotators
often have a bias towards a portion of the scale),
and problems associated with a fixed granularity
(Presser and Schuman, 1996).

Best–Worst Scaling (BWS) is an annotation
scheme that addresses these limitations by
employing comparative annotations (Louviere,
1991; Cohen, 2003; Louviere et al., 2015;
Kiritchenko and Mohammad, 2017). Annotators
are given n items at a time (an n-tuple, where
n > 1 and commonly n = 4). They are asked
which item is the best (highest in terms of the
property of interest) and which is the worst (least
in terms of the property of interest).1 When

1At its limit, when n = 2, BWS becomes a paired

comparison (Thurstone, 1927; David, 1963), but then a much
larger set of tuples need to be annotated (closer to N2).



working on 4-tuples, best–worst annotations are
particularly efficient because each best and worst
annotation will reveal the order of five of the six
items (i.e., for a 4-tuple with items A, B, C, and
D, if A is the best, and D is the worst, then A >
B, A > C, A > D, B > D, and C > D). It has
been empirically shown that annotating 2N
4-tuples is sufficient for obtaining reliable scores
(where N is the number of items) (Louviere,
1991; Kiritchenko and Mohammad, 2016).
Kiritchenko and Mohammad (2017) showed
through empirical experiments that BWS
produces more reliable and more discriminating
scores than those obtained using rating scales.2

In this paper, we describe how we obtained
fine-grained human ratings of semantic
relatedness for English term pairs involving at
least one bigram.3 The other term in the pair is
either another bigram or a unigram. We first
selected a set of target bigrams AB (A represents
the first word in the bigram and B represents the
second word). For each AB, we created several
pairs of the form AB–X, where X is a unigram or
bigram. As X’s we chose terms from a diverse set
of language resources:

• terms that are transpose bigrams BA—where
the first word is B and the second word is A
(taken from occurrences in Wikipedia);

• terms that are related to AB by traditional
semantic relations such as hypernymy,
hyponymy, holonymy, meronymy, and
synonymy (taken from WordNet); and

• terms that are co-aligned with AB in a
parallel corpus (taken from a machine
translation phrase table).

The dataset includes 3,345 term pairs
corresponding to 410 ABs. We refer to this
dataset as the Bigram Relatedness Dataset (or,
BiRD).

We use BWS to obtain semantic relatedness
by: (1) creating items that are pairs of terms, and
(2) prompting four items (pairs) at a time and
asking annotators to mark the pair that is most
related and the pair that is least related. Once the
annotations are complete, we obtain real-valued
scores of semantic relatedness for each pair using

2See Kiritchenko and Mohammad (2016, 2017) for
further details on BWS and its use in NLP applications.

3In a separate project, the second author is developing
a semantic relatedness dataset for unigrams using BWS (an
order of magnitude larger than existing ones). Project page:
http://saifmohammad.com/WebPages/Relatedness.html

simple arithmetic on the counts of how often an
item is chosen best and worst (Orme, 2009; Flynn
and Marley, 2014). (Details in Section 3.) To
evaluate the quality of BiRD we determine the
consistency of the BWS annotations. A
commonly used approach to determine
consistency in dimensional annotations is to
calculate split-half reliability (Cronbach, 1951).
We show that our semantic relatedness
annotations have a split-half reliability score of
r = 0.937, indicating high reliability, that is, if
the annotations were repeated then similar scores
and rankings would be obtained. (Details in
Section 4.)

We use BiRD to (a) obtain insights into bigram
semantic relatedness, and (b) to evaluate
automatic semantic composition methods.

Examining Bigram Semantic Relatedness:
Since very little work exists on the semantic
relatedness of bigrams, several research questions
remain unanswered, including: What is the
distribution and mean of the semantic relatedness
between a bigram and its transpose?; What is the
average semantic relatedness between a bigram
and its hypernym?; Are co-aligned terms from a
phrase table a good source of term pairs to be
included in a semantic relatedness dataset
(specifically, do they cover a wide range of
semantic relatedness values)?; etc. In Section 5,
we present an analysis of BiRD to obtain insights
into these questions.

Evaluating Semantic Composition: A common
approach to evaluate different methods of
representing words via vectors is through their
ability to rank pairs of words by closeness in
meaning (Pennington et al., 2014; Levy and
Goldberg, 2014; Faruqui and Dyer, 2014). BiRD
allows for the evaluation of semantic composition
methods through their ability to rank pairs
involving bigrams, by semantic relatedness. In
Section 6, we present benchmark experiments on
using BiRD as a testbed to evaluate various
common semantic composition methods using
various pre-trained word representations.
Specifically, we conduct experiments to gain
insights into research questions such as: Which
common mathematical operations for vector
composition (e.g., vector addition, vector
multiplication, etc.) capture the semantics of a
bigram more accurately?; Which of the two
words in a noun phrase bigram (the head noun or



the modifier) has greater influence on the
semantics of the bigram?; etc.

Contributions: The contributions of this work
can be summarized as follows:

• We obtain fine-grained human ratings of
semantic relatedness for 3,345 term pairs,
each of which includes at least one bigram.
The other term in the pair is either another
bigram or a unigram.

• We use the comparative annotation
technique Best–Worst Scaling, which
addresses the limitations of traditional rating
scales. This is the first time BWS has been
used to create a dataset for semantic
relatedness. We show that the ratings
obtained are highly reliable.

• We analyse BiRD to obtain insights into
semantic relatedness when it involves
bigrams. We also develop interactive
visualizations that allow for easy exploration
of the data. (Available on the project
webpage.)

• We present benchmark experiments on using
BiRD as a testbed to evaluate methods of
semantic composition.

The Bigram Relatedness Dataset, visualizations
of the data, and the annotation questionnaire are
made freely available through the project’s
webpage.4 We hope that the new dataset will
foster further research on how meaning is
composed in bigrams, on semantic representation
in general, and on the understanding of bigram
semantic relatedness.

The annotation task described in this paper was
approved by the National Research Council
Canada’s Research Ethics Board (protocol
number 2018-72). The board examines the
proposed methods to ensure that they adhere to
the required ethical standards. Special attention
was paid to obtaining informed consent and
protecting participant anonymity.

2 Background and Related Work

Semantic Relatedness and Semantic Similarity
Closeness of meaning can be of two kinds:
semantic similarity and semantic relatedness.
Two terms are considered to be semantically
similar if there is a taxonomic relationship

4http://saifmohammad.com/WebPages/BiRD.html

between them such as hyponymy (hypernymy), or
troponymy. Two terms are considered to be
semantically related if there is any lexical
semantic relation between them—taxonomic or
non-taxonomic. Semantically similar items tend
to share a number of properties. For example,
apples and bananas (co-hyponyms of fruit) are
both edible, they grow on trees, they have seeds,
etc. On the other hand, semantically related
concepts may not have many properties in
common, but there exists some relationship
between them which lends them the property of
being semantically close. For example, surgeon

and scalpel are semantically related as the former
uses the latter for their work.

We focus on semantic relatedness in this work,
not only because it is the broader class subsuming
semantic similarity, but also because many
psychology and neuro-linguistic studies have
demonstrated the importance of semantic
relatedness. Notable among these are studies on
semantic priming and fMRI studies that show that
the human brain stores information in a thematic
manner (based on relatedness) rather than based
on similarity (Hutchison, 2003; Huth et al., 2016).

Word-Pair Datasets: Several semantic similarity
and relatedness datasets involving unigram pairs
(word pairs) exist. Rubenstein and Goodenough
(1965) and Miller and Charles (1991) provided
influential but small English word–pair datasets
with fine–grained semantic similarity scores.
More recent larger datasets including hundreds of
pairs were provided by Finkelstein et al. (2002)
(for relatedness) and Hill et al. (2015) (for
similarity). Similar datasets exist in some other
languages as well, such as the one by Gurevych
(2006) and Panchenko et al. (2016) for
relatedness. However, none of these datasets
include items that are bigrams.

Bigram Semantic Similarity Datasets: Mitchell
and Lapata (2010) created a semantic similarity
dataset for 324 bigram pairs. The terms include
adjective–noun, noun–noun, and verb–object
bigrams. Annotators were asked to choose an
integer between one and seven, indicating a
coarse semantic similarity rating. Turney (2012)
compiled a dataset of 2,180 bigram–unigram
synonym pairs from WordNet synsets. (The
bigrams are either noun–noun or adjective–noun
phrases.) Other pairs were created taking bigrams
and words that do not exist in the same synsets.



He thus created a dataset of synonyms and
non-synonyms. In contrast to these datasets,
BiRD has fine-grained relatedness scores.

Other Similarity Datasets: There exist datasets
on the semantic similarity between sentences and
between documents (Marelli et al., 2014; Agirre
et al., 2014; Cera et al., 2017). Those are outside
the scope of this work.

Other Natural Language Datasets Created
Using BWS: BWS has been used for creating
datasets for relational similarity (Jurgens et al.,
2012), word-sense disambiguation (Jurgens,
2013), word–sentiment intensity (Kiritchenko and
Mohammad, 2016), word–emotion intensity
(Mohammad, 2018b), and tweet–emotion
intensity (Mohammad and Kiritchenko, 2018).
The largest BWS dataset is the NRC Valence,
Arousal, and Dominance Lexicon, which has
valence, arousal, and dominance scores for over
20,000 English words (Mohammad, 2018a).

3 English Bigram Relatedness Dataset

We first describe how we selected the term pairs to
include in the bigram relatedness dataset, followed
by how they were annotated using BWS.

3.1 Term Pair Selection
Randomly selecting term pairs will result in most
pairs being unrelated. This is sub-optimal in
terms of the human annotation effort that is to
follow. Further, since our goal is to create a gold
standard relatedness dataset, we wanted it to
include term pairs across the whole range of
semantic relatedness: from maximally unrelated
to maximally related. Thus, a key challenge in
term-pair selection is obtaining pairs with a wide
range of semantic relatedness scores, without
knowing their true semantic relatedness in
advance. In addition, we also wanted the dataset
to satisfy the following criteria:

• For each target bigram AB we wanted to
include several pairs of the form AB–X,
where X is a unigram or bigram.
Motivation: Applications of semantic
relatedness, such as real-word spelling
correction and textual entailment, often
require judgments of the form ‘is AB–X1

more related or less related than AB–X2’.

• There should exist some pairs AB–X, such
that X is BA and a common English bigram.

Motivation: This is useful for testing
sensitivity of semantic composition models
to word order.

• The unigrams and bigrams should be
commonly used English terms.
Motivation: Data annotation of common
terms is expected to be more reliable. Also,
common terms are more likely to occur in
application datasets.

• There should exist pairs that are
taxonomically related (i.e., semantically
similar), for example, hypernyms,
hyponyms, holonyms, etc.; and there should
exist pairs that are not taxonomically related
but semantically related nonetheless.
Motivation: This increases dataset diversity.

• We focus on noun phrases (adjective–noun
and noun–noun bigrams).
Motivation: Noun phrases are the most
frequent phrases.

To pursue these criteria, we compiled a set of
term pairs from three diverse sources (Wikipedia,
WordNet, and a machine translation phrase table)
as described below.

Wikipedia: We chose to collect our target
bigrams from the English Wikipedia dump
(2018).5 The corpus was tagged with parts of
speech (POS) using the NLTK toolbox.6 For each
of the adjective–noun and noun–noun bigrams
AB in the corpus, we checked to see if the bigram
BA (its transpose) also exists in the corpus. We
will refer to such pairs of bigrams as transpose

bigrams. Only those transpose bigrams (AB and
BA) were selected that were both noun phrases
and where both AB and BA occur in the corpus
with frequencies greater than a pre-chosen
threshold t (we chose t = 30). For a pair of
transpose bigrams, the bigram with the higher
frequency was chosen as AB and the bigram with
the lower frequency was chosen as the
corresponding BA. The above process resulted in
4,095 transpose pairs (AB–BA).

WordNet: Among the 4,095 ABs, 330 exist in
WordNet version 3.0 (Fellbaum, 1998).7 For each
of these, we selected (when available) synonyms
(at most five), a hypernym, a hyponym, a
holonym, and a meronym from WordNet.

5https://dumps.wikimedia.org/
6https://www.nltk.org/
7https://wordnet.princeton.edu/download/current-version



Translation Phrase Table: Word-aligned
parallel corpora map words in text of one
language to those in text of another language.
Often this can lead to more than one word/phrase
in one language being mapped to a common
word/phrase in the other language. We will refer
to such terms as being co-aligned. Due to the
nature of languages and the various forms that the
same text can be translated to, co-aligned terms
tend to include not just synonyms but also other
semantically related terms, and sometimes even
unrelated terms. Thus, we hypothesize that it is
beneficial to include pairs of co-aligned terms in a
semantic relatedness dataset as they pertain to
varying degrees of semantic relatedness.

We used an English–French phrase table from
the Portage Machine Translation Toolkit (Larkin
et al., 2010) to determine additional pairs AB–X.8

Specifically, for each AB–F entry in the phrase
table (where F is a French term) we keep the five
most frequent English unigrams and the five most
frequent English bigrams (other than AB) that are
also aligned to F. Among the 4,095 ABs, 454
occurred in the phrase table. This resulted in
3,255 AB–X pairs in total (1,897 where X is a
unigram, and 1,358 where X is a bigram).

Finally, we chose to filter the term pairs,
keeping only those ABs that occurred in at least
three unique pairs. (So for a given AB, apart from
the AB–BA entry, there should be at least two
other entries of the form AB–X, generated using
WordNet or the phrase table.) We also manually
examined the remaining entries and removed
those with obscure terms. The final master term
pairs list consists of 3,345 AB–X pairs in total
(1,718 where X is a unigram, and 1,627 where X
is a bigram), corresponding to 410 ABs. Thus on
average, each AB occurred in about 8 distinct
pairs. This is yet another aspect that makes BiRD
unique, as existing datasets were not designed to
include terms in multiple pairs. Table 1 shows the
number of adjective–noun pairs, the number of
noun–noun pairs, and the total number of pairs in
BiRD. (We grouped the hypernym and hyponym
pairs into a common class, which we will refer to
as the is-a pairs. Similarly we group the meronym
and holonym pairs into a common class, which
we will refer to as the part-whole pairs.)

8French was chosen as it is close to English and there exist
English–French parallel corpora of sufficient size.

Source # a–n # n–n # both
Wikipedia transpose 80 330 410
WordNet synonym 18 70 88
WordNet is-a 49 220 269
WordNet part-whole 7 30 37
PhraseTable co-aligned 440 2,101 2,541
All 594 2,751 3,345

Table 1: Number of pairs from different sources.

3.2 Annotating For Semantic Relatedness
As mentioned in the introduction, we use the
comparative annotation method Best–Worst
Scaling (BWS) to obtain the annotations. From
the list of N = 3, 345 term pairs, we generated
2N = 6, 690 distinct 4-tuples (each 4-tuple is a
set of four term pairs) such that each term pair
appears in roughly equal distinct tuples, and no
term pair appears more than once in a tuple.9

(Recall that past research has shown that
generating 2N 4-tuples in this manner is sufficient
for obtaining fairly reliable scores (Louviere,
1991; Kiritchenko and Mohammad, 2017;
Mohammad, 2018a).) The annotators were
presented with one tuple at a time and were asked
to specify which of the four pairs is most close in
meaning (or most related) and which term is the
least close (or least related).

Detailed annotation instructions (with
examples of appropriate and inappropriate
responses) were provided. Notably, we made it
clear that if terms in the pair have several
meanings, then the annotators should consider the
meanings that are closest to each other. We also
asked the annotators to be mindful of word order
(i.e., the meaning of a bigram AB may be
different from the meaning of its transpose BA).

We set up the annotation task on the
crowdsourcing platform, Figure Eight.10 We did
not collect personally identifiable information
from the annotators. The compensation that the
annotators would receive was clearly stated. We
selected a pool of annotators fluent in English and
with a history of high-quality annotations.
Annotators were told that they could annotate as
many instances as they wished. As mentioned in
the Introduction, prior to the annotation, the
planned procedure was approved by the National
Research Council Canada’s Research Ethics
Board (protocol number 2018-72).

9If 2N 4-tuples are generated from N items, and each item
is to occur in an equal number of tuples, then each item will
occur in eight tuples.

10https://www.figure-eight.com/



# Term Pairs # Tuples # Annotations per Tuple # Annotations # Annotators SHR
3,345 6,690 8 (for most tuples), >8 (for some) 57,482 427 0.9374

Table 2: BiRD annotation statistics. SHR = split-half reliability (as measured by Pearson correlation).

About 2% of the data was annotated
beforehand by the authors. These questions are
referred to as gold questions. Figure Eight
interspersed the gold questions with the other
questions. If a crowd worker answered a gold
question incorrectly, then they were immediately
notified. This served as an additional way to
guide the annotators. If an annotator’s accuracy
on the gold questions fell below 70%, then they
were refused further annotation, and all of their
annotations were discarded. This served as a
mechanism to avoid malicious annotations.

In the task settings for Figure Eight, we
specified that we needed annotations from eight
people for each 4-tuple.11 In all, 57,482 pairs of
best and worst responses were obtained from 427
annotators.12

Annotation Aggregation: The final semantic
relatedness scores were calculated from the BWS
responses using a simple counting procedure
(Orme, 2009; Flynn and Marley, 2014): For each
term pair, the semantic relatedness score is the
proportion of times the term pair was chosen as
the best minus the proportion of times the term
pair was chosen as the worst.13 The scores were
linearly transformed to the interval: 0 (lowest
semantic relatedness) to 1 (highest semantic
relatedness). We refer to the final list of 3,345
English term pairs along with their scores for
semantic relatedness as the Bigram Relatedness

Dataset (BiRD). Table 2 summarizes key
annotation statistics.

4 Reliability of Data Annotations

A commonly used measure of quality in
dimensional annotation tasks is the
reproducibility of the final scores—the extent to
which repeated independent manual annotations
produce similar results. To assess this
reproducibility, we calculate average split-half

reliability (SHR) (Cronbach, 1951) as follows:
11Note that since each term pair occurs in eight different

4-tuples, it is involved in 8⇥ 8 = 64 best–worst judgments.
12Gold questions were annotated more than eight times.
13More complex optimization algorithms exist, such

as those described in (Hollis, 2018); however, our past
experiments showed that the simple counting procedure
obtained the most reliable results.

The annotations for each 4-tuple are randomly
split into two halves. One set is put in bin 1 and
another set in bin 2. Next, two sets of semantic
relatedness scores are produced independently
from the two bins, 1 and 2, respectively. Then the
Pearson correlation between the two sets of
scores is calculated. If the annotations are of good
quality, then the correlation between the two sets
of relatedness scores will be high (closer to 1).14

This process is repeated 100 times, and the
correlations are averaged. The last column in
Table 2 shows the result. An SHR of r = 0.9374
indicates high reliability.

5 Studying Bigram Semantic Relatedness

Since very little prior work exists on the semantic
relatedness of bigrams, several research questions
remain unanswered, including:

• If both AB and BA are common English
bigrams, then what is the average semantic
relatedness between AB and BA?

• What is the range of semantic relatedness
between a bigram and its hypernym or
hyponym? What is the average semantic
relatedness of such pairs? How do these
averages and standard deviations vary with
respect to the different semantic relations?

• What is the distribution of semantic
relatedness values for co-aligned terms?

We now present analyses of the relatedness dataset
to obtain insights into these questions.

Figure 1 shows example adjective–noun and
noun–noun entries from BiRD. Observe that for
the term ageing population, the most related term
is ageing society—a co-aligned term in the phrase
table. (Other co-aligned terms have lower
relatedness scores.) The transpose bigram
population ageing is also marked as highly
related. WordNet does not provide a synonym for
ageing population. For the term adult female, the
WordNet synonym and the transposed bigram
(BA) are marked as being most related. Note that
the WordNet-provided hyponym amazon is
marked as less related (probably because that
sense of amazon is rare). BiRD can be examined

14Scores close to 0 indicate no correlation.



Figure 1: Example entries from BiRD.

for each individual relation and sorted by
relatedness scores to determine other example
pairs that seemingly should be closely related, but
are not highly semantically related in the
perception of the average English speaker. These
include pairs such as subject area–discipline

(WordNet synonym) and frying pan–spider

(WordNet hyponym). The AB–BA pairs with low
relatedness, such as law school–school law, home

run–run home, and traffic light–light traffic are
especially useful in testing whether measures of
semantic composition generate suitably different
representations for the terms in such pairs.

Table 3 shows the average semantic relatedness
scores as well as standard deviations for the term
pairs from various sources.15 Observe that, on
average, the AB–BA pairs and the AB–WordNet
synonym pairs are found to be the most related.
On average, the AB–WordNet part-whole pairs
and the AB–phrase table co-aligned pairs have
the lowest semantic relatedness scores. The high
average relatedness and low standard deviation
(�) for the transpose bigrams, indicate that these
pairs tend to be closely related to each other. The
standard deviation is markedly higher for the
other sources of word pairs. Manual examination
of such pairs (especially those involving WordNet
synonyms) revealed that this is often because one
of the terms might be related to the other in a rare
sense (such as in the amazon example). The high
standard deviations for hypernyms, hyponyms,
meronyms, and holonyms, indicate that pairs
connected by this relation in WordNet can still
exhibit a wide range of semantic relatedness.

The standard deviations also indicate that 95%

15The scores for just the adjective–noun pairs and just the
noun—noun pairs are similar.

Source avg. rel. �
Wikipedia transpose 0.669 0.118
WordNet synonym 0.640 0.194
WordNet is-a 0.550 0.177
WordNet part-whole 0.453 0.193
PhraseTable co-aligned 0.463 0.189

Table 3: Average relatedness and standard deviation
(�) scores for term pairs from the various sources.

of the co-aligned pairs have semantic relatedness
between 0.09 and 0.83 (a wide interval). Manual
examination revealed that the lowest score pairs
were unrelated and the highest score terms were
often synonymous. Thus co-aligned pairs from
phrase tables are indeed a good source of term
pairs for a semantic relatedness dataset, since
they include pairs with a wide variety of
relatedness values.

6 Evaluating Methods of Semantic
Composition on BiRD

A popular approach to represent word meaning in
natural language systems is through vectors that
capture the contexts in which the word occurs.
An area of active research is how these word
vectors can be composed to create representations
for larger units of text such as phrases and
sentences (Mitchell and Lapata, 2010; Baroni and
Zamparelli, 2010; Socher et al., 2012; Tai et al.,
2015). Even though there is a large body of work
on how to represent the meanings of sentences
(Le and Mikolov, 2014; Kiros et al., 2015; Lin
et al., 2017), there is relatively less work on how
best to compose the meanings of two words to
represent the meaning of a bigram. One reason
for this is a lack of suitable evaluation resources.
A common approach to evaluate representations
of unigrams is through their ability to rank pairs
of words by closeness in meaning (Pennington
et al., 2014; Levy and Goldberg, 2014; Faruqui
and Dyer, 2014). BiRD allows for the evaluation
of semantic composition methods through their
ability to rank pairs involving bigrams, by
semantic relatedness.

Here, we present benchmark experiments on
commonly used semantic composition methods
by measuring their ability to rank the term pairs
in BiRD by relatedness scores. The underlying
assumption is that the more accurately a method
of semantic composition can determine the
representation of a bigram, the more accurately
systems can determine the relatedness of that
bigram with other terms.



We focus on unsupervised approaches as we
wanted to identify how well basic composition
operations perform. The applicability of BiRD is
much broader though, and it can be used: (1) for
evaluating the large number of proposed
supervised methods of semantic composition; (2)
for evaluating the large number of measures of
semantic relatedness; (3) to study the mechanisms
underpinning semantic composition; etc. We
leave those for future work.

We test three vector space models to obtain
word representations: GloVe (Pennington et al.,
2014), fastText (Grave et al., 2018), and a
traditional model based on matrix factorization of
a word–context co-occurrence matrix (Turney
et al., 2011). We test four mathematical
composition operations: (1) vector addition, (2)
element-wise vector multiplication, (3) tensor
product with circular convolution (Widdows,
2008), and (4) dilation (Mitchell and Lapata,
2010). In adjective–noun and noun–noun
bigrams, the second word usually plays a role of a
head noun, and the first word is a modifier. We
test the performance of two baseline methods that
do not employ vector composition: one that
represents a bigram with the vector for the first
word and one that represents a bigram with the
vector for the second word.

Word representations: We use GloVe word
embeddings pre-trained on 840B-token
CommonCrawl corpus16 and fastText word
embeddings pre-trained on Common Crawl and
Wikipedia using CBOW.17 For the traditional
model, we use the exact word–context
co-occurrence matrix described in Turney et al.
(2011).18 They created the matrix from a corpus
of 5 ⇥ 1010 tokens gathered from university
websites. The rows correspond to terms (single
words from WordNet) and the columns
correspond to contexts (single words from
WordNet appearing to the left or to the right of
the term). Each cell of the matrix is the positive
pointwise mutual information between the term
and the context. The matrix is decomposed to
Ud⌃dV>

d (d denotes dimensionality) via
truncated singular value decomposition. Word
vectors are obtained from the matrix Ud⌃

p
d,

where rows correspond to the d-dimensional

16https://nlp.stanford.edu/projects/glove/
17https://fasttext.cc/docs/en/crawl-vectors.html
18We thank Peter Turney for providing the data.

word vectors and p is the weight factor for
singular values in ⌃d. We set parameter p to 0.5,
and the dimensionality of word vectors to
d = 300 for all three vector space models.

Unsupervised Compositional Models: For a
bigram w1w2, let u 2 R1⇥d and v 2 R1⇥d denote
the vectors for words w1 and w2, respectively.
Each of the methods below applies a different
composition function f on the word vectors u and
v to obtain the vector representation p for the
bigram w1w2: p = f(u, v):

• Addition (Salton and McGill, 1986): add the
two word vectors (p = u+ v).

• Multiplication (Mitchell and Lapata, 2010):
element-wise multiplication of the two
vectors (p = u� v, where pi = ui · vi).

• Tensor product with convolution (Widdows,
2008): outer product of two vectors resulting
in matrix Q (qij = uivj). Then, circular
convolution is applied to map Q to vector p.
This is equivalent to: pi =

P
j
uj · vi�j .

• Dilation (Mitchell and Lapata, 2010):
decompose v to parallel and orthogonal
components to u, and then stretch the
parallel component along u
(pi = vi

P
j
ujuj + (�� 1)ui

P
j
ujvj , where

� is the dilation factor). We set � = 2.

For the two baseline experiments that do not
employ vector composition, head only: p = v and
modifier only: p = u.

Semantic Relatedness: The relatedness score for
a term pair AB–X in the Bigram Relatedness
Dataset (BiRD) is computed by taking the cosine
between the vectors representing AB and X,
where X can be a unigram or a bigram.

Evaluation: As evaluation metric, we use the
Pearson correlation of the relatedness scores
predicted by a method with the gold relatedness
scores in BiRD. Some words in BiRD do not
occur in some of the corpora used to create the
word vectors. Thus we conduct experiments on a
subset of BiRD (3,159 pairs) for which word
vectors exist for all models under consideration.
To determine if the differences between the
correlation scores are statistically significant, we
perform Steiger’s Z significance test (Steiger,
1980).



Method GloVe fastText Matrix Factor.
Baselines

head only 0.342 0.403 0.339
modifier only 0.438 0.495 0.425

Composition methods

addition 0.564 0.601 0.582
multiplication 0.182 0.328 0.244
tensor product 0.374 0.382 0.451
dilation 0.523 0.495 0.496

Table 4: Pearson correlations of model predictions with
BiRD relatedness ratings. Highest scores are in bold.

Results: Table 4 shows the results. Observe that
among the three methods of word vector
representations, the best results are obtained
using fastText (word–context matrix factorization
model being a close second). Among the methods
of semantic composition, the additive models
perform best (for all three ways of representing
word vectors). The scores are statistically
significantly higher than those of the second best
(dilation). The element-wise vector multiplication
and tensor product with convolution perform
poorly (even worse than the baseline methods).
These results differ substantially from the
observations by Mitchell and Lapata (2010). In
particular, in their work the multiplication model
showed the best results, markedly outperforming
the addition model. Our results are consistent
with the findings of Turney (2012), where too the
addition model performed better than the
multiplication model. It should be noted though
that unlike BiRD which has scores for semantic
relatedness, the Mitchell and Lapata (2010) and
Turney (2012) datasets have scores for semantic
similarity. Further work is required to determine
whether certain composition models are better
suited for estimating one or the other.

Surprisingly, the baseline model that uses the
vector for the modifier word obtains better results
than the one that uses the vector for the head
noun. (The difference is statistically significant.)
To better understand this, we compute relatedness
correlations using the weighted addition of the
two word vectors (p = ↵u + (1 � ↵)v), where ↵
is a parameter that we vary between 0 and 1, in
steps of 0.1. Figure 2 shows the results. Observe
that giving more weight (but not too much
weight) to the modifier word than the head word
is beneficial. ↵ = 0.7 and ↵ = 0.8 produce the
highest correlations. These results raise further
questions under what conditions is the role of the
modifier particularly prominent, and why. We
leave that for future work.
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Figure 2: Pearson correlation coefficient (r) of the
model predictions using weighted addition with BiRD
relatedness ratings. ↵ is varied from 0 to 1 in steps of
0.1. ↵ = 0.7 and ↵ = 0.8 produce the highest scores.

7 Conclusions

We created a dataset with fine-grained human
ratings of semantic relatedness for term pairs
involving bigrams. We used the comparative
annotation technique Best–Worst Scaling, which
addresses the limitations of traditional rating
scales. We showed that the ratings obtained are
highly reliable (high SHR, r = 0.937). We
analyzed the dataset to obtain insights into the
distributions of semantic relatedness values for
pairs associated through various relations such as
WordNet assigned lexical semantic relations,
transposed bigrams, and co-aligned terms in a
parallel corpus. We show that co-aligned terms
can be related to varying degrees (from unrelated
to synonymous), thereby making them a useful
source of term pairs to include in relatedness
datasets. Finally, we presented benchmark
experiments on using BiRD as a testbed to
evaluate various unsupervised methods of
semantic composition. We found that the additive
models performed best and that giving more
weight to the modifier word can improve results
further. We make BiRD freely available to foster
further research. In the short term, it will be
interesting to explore the use of supervised
semantic composition methods, including
resources and models such as BERT (Devlin
et al., 2018) and ELMo (Peters et al., 2018), to
determine bigram relatedness.

Acknowledgments

We thank Peter Turney, Michel Simard, and Tara
Small for helpful discussions. This work is
partially supported by the German Research
Foundation (DFG) within the Research Training
Group QuantLA (GRK 1763).



References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the

8th International Workshop on Semantic Evaluation

(SemEval 2014), pages 81–91.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical

Methods in Natural Language Processing, pages
1183–1193.

Daniel Cera, Mona Diab, Eneko Agirrec, Inigo
Lopez-Gazpioc, Lucia Speciad, and Basque Country
Donostia. 2017. SemEval-2017 Task 1: Semantic
textual similarity multilingual and cross-lingual
focused evaluation. In Proceedings of the 11th

International Workshop on Semantic Evaluation

(SemEval 2017), pages 1–14.

Steven H. Cohen. 2003. Maximum difference scaling:
Improved measures of importance and preference
for segmentation. Sawtooth Software, Inc.

Lee J. Cronbach. 1951. Coefficient alpha and
the internal structure of tests. Psychometrika,
16(3):297–334.

Herbert Aron David. 1963. The method of paired

comparisons. Hafner Publishing Company, New
York.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

Manaal Faruqui and Chris Dyer. 2014. Improving
vector space word representations using multilingual
correlation. In Proceedings of the 14th Conference

of the European Chapter of the Association for

Computational Linguistics, pages 462–471.

Christiane Fellbaum. 1998. WordNet: An Electronic

Lexical Database. Bradford Books.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: The
concept revisited. ACM Trans. Inf. Syst., 20(1):116–
131.

T. N. Flynn and A. A. J. Marley. 2014. Best-
worst scaling: theory and methods. In Stephane
Hess and Andrew Daly, editors, Handbook of

Choice Modelling, pages 178–201. Edward Elgar
Publishing.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta,
Armand Joulin, and Tomas Mikolov. 2018.
Learning word vectors for 157 languages. In

Proceedings of the International Conference on

Language Resources and Evaluation (LREC 2018).

Iryna Gurevych. 2006. Thinking beyond the nouns-
computing semantic relatedness across parts of
speech. Technical report, Darmstadt University
of Technology, Germany, Department of Computer
Science, Telecooperation.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. Computational

Linguistics, 41(4):665–695.

Geoff Hollis. 2018. Scoring best-worst data in
unbalanced many-item designs, with applications
to crowdsourcing semantic judgments. Behavior

Research Methods, 50(2):711–729.

Keith A Hutchison. 2003. Is semantic priming
due to association strength or feature overlap? a
microanalytic review. Psychonomic Bulletin &

Review, 10(4):785–813.

Alexander G Huth, Wendy A de Heer, Thomas L
Griffiths, Frédéric E Theunissen, and Jack L Gallant.
2016. Natural speech reveals the semantic maps that
tile human cerebral cortex. Nature, 532(7600):453.

David Jurgens. 2013. Embracing ambiguity: A
comparison of annotation methodologies for
crowdsourcing word sense labels. In Proceedings

of the Annual Conference of the North American

Chapter of the Association for Computational

Linguistics, Atlanta, GA, USA.

David Jurgens, Saif M. Mohammad, Peter Turney,
and Keith Holyoak. 2012. Semeval-2012 task
2: Measuring degrees of relational similarity. In
Proceedings of the 6th International Workshop on

Semantic Evaluation (SemEval), pages 356–364,
Montréal, Canada.

Svetlana Kiritchenko and Saif M. Mohammad.
2016. Capturing reliable fine-grained sentiment
associations by crowdsourcing and best–worst
scaling. In Proceedings of The 15th Annual

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies (NAACL), San
Diego, California.

Svetlana Kiritchenko and Saif M. Mohammad. 2017.
Best-worst scaling more reliable than rating scales:
A case study on sentiment intensity annotation.
In Proceedings of The Annual Meeting of the

Association for Computational Linguistics (ACL),
Vancouver, Canada.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors.
In Proceedings of the Conference on Advances

in Neural Information Processing Systems, pages
3294–3302.



Samuel Larkin, Boxing Chen, George Foster, Uli
Germann, Eric Joanis, J. Howard Johnson, and
Roland Kuhn. 2010. Lessons from NRC’s Portage
System at WMT 2010. In Proceedings of the 5th

Workshop on Statistical Machine Translation (WMT-

2010), pages 127–132.

Quoc Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
Proceedings of the International Conference on

Machine Learning, pages 1188–1196.

Omer Levy and Yoav Goldberg. 2014. Neural
word embedding as implicit matrix factorization.
In Proceedings of the Conference on Advances

in Neural Information Processing Systems, pages
2177–2185.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos
Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. 2017. A structured self-
attentive sentence embedding. In Proceedings

of the International Conference on Learning

Representations.

Jordan J. Louviere. 1991. Best-worst scaling: A model
for the largest difference judgments. Working Paper.

Jordan J. Louviere, Terry N. Flynn, and A. A. J. Marley.
2015. Best-Worst Scaling: Theory, Methods and

Applications. Cambridge University Press.

Marco Marelli, Luisa Bentivogli, Marco Baroni,
Raffaella Bernardi, Stefano Menini, and Roberto
Zamparelli. 2014. Semeval-2014 task 1: Evaluation
of compositional distributional semantic models on
full sentences through semantic relatedness and
textual entailment. In Proceedings of the 8th

International Workshop on Semantic Evaluation

(SemEval 2014), pages 1–8.

George A Miller and Walter G Charles. 1991.
Contextual correlates of semantic similarity.
Language and Cognitive Processes, 6(1):1–28.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive

Science, 34(8):1388–1429.

Saif Mohammad and Graeme Hirst. 2005.
Distributional measures as proxies for semantic
relatedness. arXiv:1203.1858. 2005.

Saif Mohammad and Svetlana Kiritchenko. 2018.
Understanding emotions: A dataset of tweets to
study interactions between affect categories. In
Proceedings of the 11th Edition of the Language

Resources and Evaluation Conference (LREC-

2018), Miyazaki, Japan.

Saif M. Mohammad. 2018a. Obtaining reliable human
ratings of valence, arousal, and dominance for
20,000 english words. In Proceedings of The Annual

Conference of the Association for Computational

Linguistics (ACL), Melbourne, Australia.

Saif M. Mohammad. 2018b. Word affect intensities.
In Proceedings of the 11th Edition of the Language

Resources and Evaluation Conference (LREC-

2018), Miyazaki, Japan.

Bryan Orme. 2009. Maxdiff analysis: Simple
counting, individual-level logit, and HB.

Alexander Panchenko, Dmitry Ustalov, Nikolay
Arefyev, Denis Paperno, Natalia Konstantinova,
Natalia Loukachevitch, and Chris Biemann. 2016.
Human and machine judgements for Russian
semantic relatedness. In Proceedings of the

International Conference on Analysis of Images,

Social Networks and Texts, pages 221–235.

Jeffrey Pennington, Richard Socher, and
Christopher D. Manning. 2014. Glove: Global
vectors for word representation. In Proceedings of

the Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of the Annual

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies (NAACL).

Stanley Presser and Howard Schuman. 1996.
Questions and Answers in Attitude Surveys:

Experiments on Question Form, Wording, and

Context. SAGE Publications, Inc.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun.

ACM, 8(10):627–633.

Gerard Salton and Michael J. McGill. 1986.
Introduction to modern information retrieval.
McGraw-Hill, Inc.

Richard Socher, Brody Huval, Christopher D
Manning, and Andrew Y Ng. 2012. Semantic
compositionality through recursive matrix-vector
spaces. In Proceedings of the 2012 Joint Conference

on Empirical Methods in Natural Language

Processing and Computational Natural Language

Learning, pages 1201–1211.

James H. Steiger. 1980. Tests for comparing elements
of a correlation matrix. Psychological Bulletin,
87(2):245.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory
networks. In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing,
pages 1556–1566.

Louis L. Thurstone. 1927. A law of comparative
judgment. Psychological Review, 34(4):273.



Peter D Turney. 2012. Domain and function: A dual-
space model of semantic relations and compositions.
Journal of Artificial Intelligence Research, 44:533–
585.

Peter D Turney, Yair Neuman, Dan Assaf, and Yohai
Cohen. 2011. Literal and metaphorical sense
identification through concrete and abstract context.
In Proceedings of the Conference on Empirical

Methods in Natural Language Processing, pages
680–690.

Dominic Widdows. 2008. Semantic vector products:
Some initial investigations. In Second AAAI

Symposium on Quantum Interaction, volume 26.


