Hypotheses:
- Co-occurrence hypothesis of Antonyms
 Antonym pairs co-occur more often than random.
- Distributional Hypothesis of Antonyms
 Antonym pairs occur in similar contexts.

Central idea (Mohammad et al., 2008):
1. Identify whether two words have a contrast relation.
 a. generate seed antonym pairs:
 (i) using antonym generating affix rules
 (ii) mark corresponding thesaurus categories as contrasting
 b. consider adjacent thesaurus categories to be contrasting.
2. Determine degree of antonymy:
 a. The degree of antonymy between two contrasting categories is proportional to their semantic closeness:
 distributional hypothesis for antonyms.
 b. The degree of antonymy between two words across a contrasting category pair is proportional to their tendency to co-occur:
 co-occurrence hypothesis for antonyms.

Example:
All word pairs across categories HIDING and REVEALING are marked to have a contrast relation because seed antonym pair cover and uncover. cover and uncover: strong tendency to co-occur suggests high degree of antonymy. unnoticed and uncover: moderate tendency to co-occur suggests medium degree of antonymy. curtain and spill: weak tendency to co-occur suggests low degree of antonymy.

Objective: Place word pairs on this scale
semantically not antonymous semantically not antonymous

Antonyms
- Clear opposites: create-destroy hard-soft promote-demotioned wet-dry
- Contrasting word pairs: fired-employed promised-censured high-hard large-small-scale fine-blend-advance cogent-unconvincing

Distributional Hypothesis of Antonyms

Manual creation of affix rules helps.

WordNet seeds

Manually create list of affixes that tend to generate antonyms:
- x-abx normal- abnormal
- x-dlx trust-distrust
- x-mnx classified-unclassified
- x-mnx consistent-inconsistent
- x-mnx aligned- misaligned
- x-mnx mobile-immobile
- x-mux practice-malpractice
- x-mux fortunate-misfortune
- x-dlx legitimate-illegitimate
- r-xix regular- irregular
- imx-exx implicit-explicit
- imx-exx introvert-extrovert
- upx-dlx upstream-downstream
- ovex-oxerx overdone-underdone
- xless-ful harmless-harmful

False positives such as part-depart and tone-tone did not affect results much.

Relation with semantic distance
- Antonym pairs fall here:
 - semantically distant
 - semantically related
 - semantically similar

Antonym pairs simultaneously convey a sense of both distance and closeness:
- semantically related;
- but not semantically similar.

Evaluation: Solve 950 GRE closest-opposite questions

Examples
- Obdurate (hardened in feelings)
 Meager (answer)
- Obdurate (resistant to persuasion)
 Yielding (answer)

Results

Conclusions
- Proposed a computational measure of antonymy.
 Geared towards natural language applications.
 Captures semantic contrast.
- Used the structure of a thesaurus and distributional hypothesis
 Small set of affix rules found to be potent.
 WordNet helped, but can be done without.

Future Work
- Compute word-pair antonymy in a resource-poor language by combining its text and an English thesaurus.
- Using affix-rule information from different languages to improve performance in a target language.
- Creating a wide coverage polarity lexicon.
- Using word-pair antonymy for text summarization.

Why be Antonymy-Aware
- Detect incompatibles: contradictions
 Mad-Eye Moody finds the dementors charming
 Mad-Eye Moody detests the dementors.
 differing sentiment/opinion
 Cornelius Fudge is an incompetent minister of magic.
 Fudge is one of the finest ministers of magic ever.
 non-coherent entities
 Viktor is short and shy.
 Viktor is an imposing quidditch player from Romania.
- Detecting paraphrases
 Sirius Black could not evade the dementors.
 The dementors caught Sirius Black.
- Detecting humor
 I don’t suffer from insanity; I enjoy every minute of it.
 Procrastinate now!
- Separating antonymous words from those that are semantically similar, as in a distributional thesaurus (Lin, 1998).

References
 In Proceedings of the 17th International Conference on
 Computational Linguistics, pages 768–773, Montreal, Canada.
 Computing Word-Pair Antonymy. In Proceedings of the

Acknowledgments
This work was supported, in part, by the National Science Foundation under
Grant No. IIS-0705832, in part, by the Human Language Technology Center
of Excellence, and in part, by the Natural Sciences and Engineering
Research Council of Canada. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsor. We thank Soumendra
Muresan and Siddharth Patwardhan for their feedback.

Towards Antonymy-Aware Natural Language Applications
Saif Mohammad1, Bonnie Dorr1,2, and Graeme Hirst3
University of Maryland1, HLT Center of Excellence2, University of Toronto3